Class:12

Unit Test-1

Max Marks:50

Applications Of Matrices and Determinants Time:45 Minutes

Part-I

Answer all the Questions:
1. If
$$A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$$
, then $9I_2 - A =$
(1) A^{-1} (2) $\frac{A^{-1}}{2}$ (3) $3A^{-1}$ (4) $2A^{-1}$
2. If $A^T A^{-1}$ is symmetric then $A^2 =$
(1) A^{-1} (2) $(A^T)^2$ (3) A^T (4) $(A^{-1})^2$
3. If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ and $A(adjA) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then k =
(1) 0 (2) $\sin \theta$ (3) $\cos \theta$ (4) 1
4. Let $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and $4B = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$. If B is the inverse of A, then
the value of x is
(1) 2 (2) 4 (3) 3 (4) 1
5. Cramer's rule is applicable only when

(1)
$$\Delta = 0$$
 (2) $\Delta \neq 0$ (3) $\Delta_x = \Delta_y = \Delta_z = 0$ (4) $\Delta = 0, \Delta_x = 0$

Part-II

Answer any all the Questions:

6. Prove that
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 is orthogonal.
7. Find the rank of $\begin{bmatrix} -1 & 3 \\ 4 & -7 \\ 3 & -4 \end{bmatrix}$
8. If $\operatorname{adj}(A) = \begin{bmatrix} 2 & -4 & 2 \\ -3 & 12 & -7 \\ -2 & 0 & 2 \end{bmatrix}$, find A.
9. If $\operatorname{adj} A = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, then find A^{-1}

10. If
$$adjA = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$$
 and $adjB = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$, find $adj(AB)$.

1 DR.K.THIRUMURUGAN | PGT | GHSS | VAZHUTHAVUR | VILLUPURAM DT-605 502

5X1=5

5X2=10

Part-III

Answer any all the Questions:

- 11. If $A = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$, verify that A(adjA) = (adjA)A = |A|I.
- 12. Solve the following system of linear equations, using matrix inversion method: 5x + 2y = 3, 3x + 2y = 5.
- 13. Find the inverse of $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ by Gauss-Jordan method.

14. Test for consistency and if possible, solve the following systems of equations by rank method. 2x + 2y + z = 5, x - y + z = 1, 3x + y + 2z = 4

15. If $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$.

Part-IV

Answer any all the Questions:

- 16. Find the value of k for which the equations kx 2y + z = 1, x 2ky + z = -2, x 2y + kz = 1 have (i)no solution (ii)unique solution (iii)infinitely many solution
- 17. By using Gaussian elimination method, balance the chemical reaction equations: $C_2H_6 + O_2 \rightarrow H_2O + CO_2$
- 18. Solve, by Cramer's rule, the system of equations $\frac{3}{x} - \frac{4}{y} - \frac{2}{z} - 1 = 0, \frac{1}{x} + \frac{2}{y} + \frac{1}{z} - 2 = 0, \frac{2}{x} - \frac{5}{y} - \frac{4}{z} + 1 = 0$
- 19. If $ax^2 + bx + c$ is divided by x + 3, x 5, and x 1, the remainders are 21,61 and 9 respectively. Find *a*, *b* and *c*. (Use Gaussian elimination method.)

2 DR.K.THIRUMURUGAN | PGT | GHSS | VAZHUTHAVUR | VILLUPURAM DT-605 502

5X3=15

4X5=20