

6.1 Angle Measure

2

Objective<mark>s</mark>

- Angle Measure
- Angles in Standard Position

3

Angle Measure

In this case R_1 is called the **initial side**, and R_2 is called the **terminal side** of the angle.

If the rotation is counterclockwise, the angle is considered **positive**, and if the rotation is clockwise, the angle is considered **negative**.

6

Angle Measure

The **measure** of an angle is the amount of rotation about the vertex required to move R_1 onto R_2 .

Intuitively, this is how much the angle "opens." One unit of measurement for angles is the **degree**.

An angle of measure 1 degree is formed by rotating the initial side $\frac{1}{360}$ of a complete revolution.

In calculus and other branches of mathematics a more natural method of measuring angles is used: *radian measure*.

7

7

8

The circumference of the circle of radius 1 is 2π , so a complete revolution has measure 2π rad, a straight angle has measure π rad, and a right angle has measure $\pi/2$ rad.

An angle that is subtended by an arc of length 2 along the unit circle has radian measure 2 (see Figure 3).

RELATIONSHIP	BETWEEN C	DEGREES AND	RADIANS		
180	$^{\circ} = \pi$ rad	1 rad = $\left(\frac{18}{\pi}\right)$	$\left(\frac{0}{2}\right)^{\circ} = 1$	$=\frac{\pi}{180}$ rad	
1. To convert de	grees to radia	ins, multiply by	$\frac{\pi}{180}$.		
2. To convert rat	lians to degre	ees, multiply by	$\frac{180}{\pi}$.		

11

Angle Measure

A note on terminology: We often use a phrase such as "a 30° angle" to mean *an angle whose measure is* 30°.

Also, for an angle θ we write $\theta = 30^{\circ}$ or $\theta = \pi/6$ to mean *the measure of* θ *is* 30° or $\pi/6$ *rad.*

12

When no unit is given, the angle is assumed to be measured in radians.

Angles in Standard Position

Two angles in standard position are **coterminal** if their sides coincide.

In Figure 5 the angles in (a) and (c) are coterminal.

15

Example 2 – Coterminal Angles

- (a) Find angles that are coterminal with the angle θ = 30° in standard position.
- (b) Find angles that are coterminal with the angle $\theta = \frac{\pi}{3}$ in standard position.

Solution:

(a) To find positive angles that are coterminal with θ , we add any multiple of 360°.

16

16

Example 2 – Solution					
Thus					
30° + 360° = 390° and 30° + 720° = 750°					
are coterminal with θ = 30°. To find negative angles that are coterminal with θ , we subtract any multiple of 360°.					
Thus					
$30^{\circ} - 360^{\circ} = -330^{\circ}$ and $30^{\circ} - 720^{\circ} = -690^{\circ}$					
are coterminal with θ .					
	17				

