MODEL QUESTION - 2077

Grade: 11

Time: 3 hours	Mahtematics (Mat.007)	F.M.: 75
Attempt all the qu	estions	

Group 'A' $[11 \times 1 = 11]$

Rewrite the correct option in your answer sheet.

- 1. Which one of the following is a statement ?
 - A. The fishes are beautiful.
 - B. Study mathematics.
 - C. x is a capital of country y.
 - D. Water is essential for health.
- 2. The alue of : $\sqrt{-16} \times \sqrt{-25}$ is A. -20 B. -20*i* C. 20*i* D. 20
- 3. If $\angle C = 60^{\circ}, b = 5$ cm and a = 4 cm of $\triangle ABC$, what is the value of c ?
 - A. 3.58 cm B. 4.58 cm C. 4.89 cm D. 4.56 cm
- 4. In a triangle $ABC, B = 120^{\circ}, a = 1, c = 1$ then the other angles and sides are

A. $35,45,\sqrt{2}$ B. $10,15,\sqrt{3}$ C. 20,40,2 D. $30,30,\sqrt{3}$

- 5. The cosine of the angle between the vector $\vec{a} = \vec{i} 2\vec{j} + 3\vec{k}$ and $\vec{b} = \vec{i} + 3\vec{j} + 3\vec{k}$ is A. $\frac{1}{14}$ B. 14 C. $\sqrt{14}$ D. 196
- 6. The equation of parabola with the vertex at the origin and directrix y 2 = 0 is..
 - A. $x^2 8y = 0$ B. $y^2 + 8y = 0$ C. $x^2 + 8y = 0$ D. $y^2 8y = 0$

- 7. A mathematical problem is given to three students Sumit, Sujan and Rakesh whose chance of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{a}$ respectively. The probability that the the problem is solved is $\frac{3}{4}$. The possible values of a are A. $\frac{9}{2}$ B. 4 C. $\frac{1}{4}$ D. $\frac{1}{8}$ 8. $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$ is equal to A. 0 B. ∞ C. 1 D. $\frac{0}{0}$ 9. The derivative of $\frac{4x^2 + 3}{3x^2 - 2}$ is ... A. $\frac{-34x}{(3x^2 - 2)^2}$ B. $\frac{30x^2}{3x^2 - 2}$ C. $\frac{-32x}{(3x^2 - 2)^3}$ D. $\frac{-31x}{(3x - 2)^2}$
- 10. By Newton's Rapshon, the positive root of $x^3 18 = 0$ in (2,3) is A. 2.666 B. 2.621 C. 2.620 D. 2.622
- 11. The forces action at an angle of 45° have a resultant equal to $\sqrt{10}N$, if one of the forces be $\sqrt{2}N$, what is the other force.

A. 1N B. 2N C. 3N D. 4N

OR

The total cost function of a producer is given as $C = 500 + 30Q + \frac{1}{2}Q^2$, Which of the following is the marginal cost(MC) at Q = 4? A. Rs.38 B. Rs.34 C. Rs.30 D. Rs.28 . Group 'B' $[8 \times 5 = 40]$

- 12. A function $f(x) = x^2$ is given. Answer the following question for the function f(x).
 - (i) What is the algebraic nature of the function ?
 - (ii) Write the name of the locus of the curve.
 - (iii) Write the vertex of the function.

- (iv) Write any one property for sketching the curve.
- (v) Write the domain of the function.
- 13. Compare the sum of n terms of the series: $1 + 2a + 3a^2 + 4a^3$ and a + 2a + 3a + 4a..... upto n terms.
- 14. (a) In any triangle, prove that:

$$(b+c)\sin\frac{A}{2} = a\sin\left(\frac{A}{2} + B\right) \tag{3}$$

- (b) Express $\vec{r} = (4,7)$ as the linear combination of $\vec{a} = (5,-4)$ and $\vec{b} = (-2,5)$ (2)
- 15. Calculate the appropriate measure of Skewness for the date given below.

Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
Workers	10	12	25	35	40	50

- Define different types of discontinuity of a function. Also write the condition for increasing, decreasing and convavity of function. (2+3)
- 17. Evaluate: $\int \frac{x^2 dx}{\sqrt{a^2 x^2}}$
- 18. Define Trapezoidal rule. Evaluate using Trapezoidal rule for $\int_0^1 \frac{dx}{1+x} n = 4.$
- 19. State sine law and use it to prove Lami's theorem.

OR

A decline is the price of good X by Rs. 5 causes an increase in its demand by 20 units to 50 units. The new price of X is 15.

(a) Calculate elasticity of demand.

(b) The elasticity of demand is negative, what does it mean?

Group 'C'
$$[8 \times 3 = 24]$$

20. (a) The factors of expression $\omega^3 - 1$ are $\omega - 1$ and $\omega^2 + \omega + 1$. If $\omega^3 - 1 = 0$

i. Find the possible values of ω and write the real and imaginary roots of ω . (2)

ii. Prove that: $\begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1 \end{vmatrix} = 0$, where *n* is positive integer. (4)

- (b) Veryfy that: $|x+y| \le |x|+|y|$ with x=2 and y=-3. (2)
- 21. (a) The single equation of pair of lines is $2x^2 + 3xy + y^2 + 5x + 2y 3 = 0$.
 - i. Find the equation of pair of straight lines represented by the single equation. (4)
 - ii. Are the pair of lines represented by the given equation passes through origin? Write with reason. (1)
 - iii. Find the point of intersection of the pair of lines. (2)
 - (b) If three vectors \vec{a}, \vec{b} and \vec{c} are mutually perpendicular unit vectors in space then write a realation between them. (1)
- 22. (a) Distinguish between derivative and anti-derivative of a function. Write their physical meanings and illustrate with example in your context. Find the differential coefficient of $\log \sin x$ with respect to x. (1+2+2)
 - (b) Find the area bounded by the y-axis, the curve $x^2 = 4(y-2)$ and the line y = 11. (3)

^{***}