

Transformations:
$$f(x) \to f(x) = af(n(x-b)) + c$$
 or $(x, y) \to \left(\frac{x}{n} + b, ay + c\right)$

- Transformations of a function is one of the following:
 - Dilation (STRETCH) (from the *x*-axis or *y*-axis);
 - Reflection (FLIP) (in x-axis or y-axis);
 - Translation (SLIDE) (vertically and/or horizontally);
 - Rotation (we don't study these).
- The order to deal with the transformations is **DRT** (alphabetical)
- The Cartesian Plane is represented by the set R^2 of all ordered pairs of real numbers.

Dilations

- This is a stretch or contraction of the graph from the x-axis or the y-axis
- *a* causes a dilation of factor *a* from the *x*-axis $(x, y) \rightarrow (x, ay)$
- *n* causes a dilation of factor $\frac{1}{n}$ from the y-axis $(x, y) \rightarrow \left(\frac{x}{n}, y\right)$
- We describe the dilations like:
 - The graph is dilated by a factor of a from the x-axis, or
 - The graph is dilated by a factor of *a* parallel to the *y*-axis
 - The graph is dilated by a factor of $\frac{1}{n}$ from the y-axis

Example: Sketch the graph of $f(x) = 3x^2$ by comparing it to $f(x) = x^2$

Here a = 3First sketch $f(x) = x^2$ Then multiply each y value by 3. (= 3 f(x))

The graph is dilated by a factor of 3 from the x-axis.

GeoGebra <u>3a Quadratic Function Transformation.ggb</u>

Example: Sketch $f(x) = (2x)^2$

Here n = 2

First sketch $f(x) = x^2$ Then multiply each x value by $\frac{1}{2}$.

Could also be a dilation of factor 4 from the *x*-axis. Why?

GeoGebra 3a Quadratic Function Transformation.ggb

Reflections

- There are three types of reflections:
 - o In the x-axis, $y = -f(x), (x, y) \rightarrow (x, -y)$
 - o In the y-axis, $y = f(-x), (x, y) \rightarrow (-x, y)$
 - In the line y = x, which we dealt with in **Inverse functions**.

Reflections in the *x***-axis,** y = -f(x)**or when** a < 0

Example: Sketch $f(x) = \frac{-x^2}{2}$

Here $a = -\frac{1}{2}$

The graph is reflected in the x-axis and dilated by a factor of $\frac{1}{2}$ from x-axis.

Reflections in the *y***-axis**, y = f(-x)

Example: Sketch $f(x) = x^3 + 3$, f(-x) and -f(-x).

$$f(-x) = (-x)^3 + 3$$

= -x³ + 3

$$-f(-x) = -(-x^{3} + 3)$$

= $x^{3} - 3$

GeoGebra 2a Cubic Function Transformation.ggb

• -f(-x) is a reflection in both x & y axes.

> X

5

⇒ x

5

Translations

- There are two types of translations:
 - Along the direction of the x-axis : f(x) = f(x-b); $(x, y) \rightarrow (x+b, y)$
 - Along the direction of the y-axis: $f(x) = f(x) + c \cdot (x, y) \rightarrow (x, y + c)$

1. Along the direction of the *x*-axis : f(x) = f(x-b)

- Sketch the graph of $f(x) = (x+4)^3$.
- Translation of 4 units in the negative direction of the *x*-axis.

- Sketch the graph of $f(x) = (x-2)^2$
- _translation_ of _2_ units in the _positive_ direction of the X-axis.

- 2. Along the direction of the y-axis: f(x) = f(x) + c
- Sketch the graph of $f(x) = x^2 + 4$
- translation of 4_ units in the positive direction of the Y-axis.

"Repeated Factor Squared"

- Consider the function $f(x) = (x+3)(x-2)^2$
- The *X* intercepts are -3 and 2
- (2, 0) is also a Turning Point
- "A repeated factor squared is both an X Intercept and a Turning Point"

Repeated Factor Cubed"

- Consider the function $f(x) = (x+1)^3(x-4)$
- The X intercepts are -1 and 4
- (-1, 0) is also a Point of inflexion
- "A repeated factor cubed is both an X-Intercept and a Point of Inflection

$$\bigcirc$$

- GeoGebra
 - **Ex4A** Q 1, 3; **Ex 3A** Q 7 ab; **Ex 3B** Q 11a; •
 - **Ex 3C** Q 1; **Ex 3D** Q 1a; **Ex 3E** Q 2 abe, 3 bc •

Transformations Summary $f(x) \rightarrow af(n(x-b)) + c$ or $(x, y) \rightarrow \left(\frac{x}{n} + b, ay + c\right)$

Example 1: State the transformations from f(x) to y = -2f(3(x+4)) - 1.

A dilation of factor of 2 from the x – axis and a factor of $\frac{1}{3}$ from the y - axis, followed by a reflection

in the x – axis, then a translation of 4 units in the negative direction of the x – axis and a translation of 1 unit in the negative direction of the y – axis.

Example 2: Describe the transformations undergone by $y = \log_e x$ to $y = 1 - 3\log_e(2x - 8)$.

$$y = 1 - 3\log_e(2x - 8) = -3\log_e(2(x - 4)) + 1$$

A dilation of factor of 3 from the x – axis and a factor of $\frac{1}{2}$ from the y - axis, then a reflection in the x- axis, followed by a translation of 4 units in the positive direction of the x – axis and a translation of 1 unit in the positive direction of the y – axis.

Example 3: Write the equation of the rule when $y = x^2$ is transformed by:

- a translation of 1 unit in the positive direction of the x axis and 2 units in the positive • direction of the y - axis, followed by,
- a dilation of factor of 2 from the y axis, followed by,
- a reflection in the x axis.

$$\Rightarrow ((x-1)^{2}+2) \Rightarrow \left(\frac{x}{2}-1\right)^{2}+2 \Rightarrow -\left(\left(\frac{x}{2}-1\right)^{2}+2\right) \therefore y = -\left(\frac{x}{2}-1\right)^{2}-2 \quad or \quad y = -\left(\frac{1}{2}(x-2)\right)^{2}-2$$
$$y = -\frac{1}{4}(x-2)^{2}-2 \quad or \quad f(x) \to f(x-1)+2 \to f\left(\frac{x}{2}-1\right)+2 \to -\left(f\left(\frac{x}{2}-1\right)+2\right) \to -f\left(\frac{x}{2}-1\right)-2$$

Exercise on Sequence of Transformations

1. State the sequence of transformations that each of the following functions have undergone from y = f(x).

(a) $y = 3f(-2(x+3)) + 4$.	(b) $y = 0.5f(3(x-2)) + 1$
(c) $y = 2f(-0.4(x+3)) - 0.2$	(d) $y = 2 - 3f(2x+1)$

2. Describe the transformations undergone by each of the following functions to produce the second function.

(a)
$$y = \log_e x$$
 to $y = 4 \log_e 2(x+3) - 5$

(c)
$$y = \cos x$$
 to $y = -3\cos\left(2x + \frac{\pi}{4}\right) + 1$

(e) $y = \sin x$ to $y = 2\sin \pi (3x-4)$

(b)
$$y = 0.5f(3(x-2))+1$$

(d) $y = 2-3f(2x+1)$

(b)
$$y = \sqrt{x}$$
 to $y = 2\sqrt{3x+4} + 5$
(d) $y = x^6$ to $y = 3(2x+5)^6 - 2$

Ex4E Q 1,2, 3, 4; **Ex 3A** Q 7 d**; Ex 3B** Q 4; **Ex 3C** Q 2b, 4a; **Ex 3D** Q 4d; **Ex 3E** Q 1a; **Ex4F** Q 1, 2, 3, 4, 5, 6

Determining a Rule for a Function from a Graph

• Worksheet – Matching Graphs to their rules Match the following graphs with the correct equation:

• Example: Find the rule for:

We know the x-int s: (-1,0), (4,0) : y = a(x+1)(x-4)Use (0,-6) $\Rightarrow -6 = a(0+1)(0-4)$ -6 = -4a $\frac{3}{2} = a$ $\therefore y = \frac{3}{2}(x+1)(x-4)$

- Graphical Calculator can be used for this example.
 - Insert Lists & Spreadsheet
 - X-values List1
 - o *Y-values List2*
 - o Regression Menu Statistics Calculations
- **Example:** Find the rule for: (1, -1) on curve.
- This is a quartic.
- Point of inflection at the origin, therefore a repeated factor cubed, x^3
- Also an *x*-intercept at (2,0) $y = ax^3(x-2)$

$$y = ux$$

$$-1 = a(1)^3(1-2)$$

$$-1 = -a$$

$$1 = a$$

$$\therefore y = x^3(x-2)$$

• **Example:** Find the rule for:

• Ex4A Q 8, 9; Ex4B Q 1, 2, 3, 4, 7, 8, 9; Ex4G Q 1, 3, 4, 5, 6, 7, 8; Ex3G 3, 4, 5, 6, 7ab, 8, 9

Transformations of $f(x) = x^p$; p = -1, -3, ...

-10

 $a = 4 \& b = 2, \rightarrow 4f(x-2)$

(iv)

re-write the function: $f(x) = \frac{4}{-x+2} = \frac{4}{-(x-2)}$

dilation of factor 4, a reflection in the *y*-axis and a translation of 2 units to the right (positive direction of the *x*-axis):

<u>Note:</u> the vertical asymptote also moves 2 units to the right. *Y*-Intercept: y = 2

$$a = 4, b = 2 \& n = -1 \rightarrow 4f(-(x-2))$$

(v)
$$f(x) = \frac{-3x-3}{x+2} = \frac{-3(x+2)+3}{x+2} = \frac{-3(x+2)}{x+2} + \frac{3}{x+2} = \frac{3}{x+2} - 3$$

A dilation of factor 3 from the *x*-axis, a translation of three units in the negative direction of the *y*-axis and a translation of 2 units in the negative direction of the *x*-axis:

- Ex3A Q 2, 3 aefghk, 4, 5 be, 8b; Ex3B Q 1, 5 ab, 7 Ex3D Q 4 c; Ex3E Q 4af; Ex3F 1 abef, 2 dgij, 3, 4, 5 ab
- •
- •
- Hint Ex 3F Q4
- $y = \frac{4x+5}{2x+3} = \frac{2(2x+3)-1}{2x+3} = 2 \frac{1}{2x+3}$
- Or synthetic division

•
$$y = \frac{4x+5}{2x+3} = \frac{2x+\frac{5}{2}}{x+\frac{3}{2}}$$
 first (divide all terms by 2)

• **Transformations of** $f(x) = x^p$; p = -2, -4, ...

•
$$\frac{1}{x^p} \rightarrow \frac{a}{(n(x-b))^p} + c$$

 $\langle \rangle$

GeoGebra 9 Truncus Function Transformation.ggb

• **Examples:** Sketch the graph of:

$$if \quad g(x) = \frac{1}{x^2} \rightarrow f(x) = 4g(x-2)$$
(iv)

dilation of factor 3, a reflection in the x-axis and a translation of 2
units to the left (negative direction of the x-axis):
Note: the vertical asymptote also moves 2 units to the left.

Y-Intercept: $y = \frac{-3}{(0+2)^2} = \frac{-3}{4}$

if $g(x) = \frac{1}{x^2} \rightarrow f(x) = -3g(x+2)$

(v) dilation of factor 3, a translation of three units down (negative direction of the y-axis) and a translation of 2 units to the left (negative direction of the x-axis):

• Ex3A Q 3 bcij, 5cd, 7c, 8a; Ex3B Q 2, 5d, 6, 10 ae, 11 bde; Ex3C Q4 cd; Ex3D Q 1c, 4 efg, 6; Ex3E Q 1 b, 2 cd, 3a, 4bc; Ex 3F 1 cdg, 2h, 5c

Transformations of functions of the form $f(x) = x^{\frac{p}{q}}$

GeoGebra <u>5b Power Functions Transformation.ggb</u>

- $x^{\frac{p}{q}} \rightarrow a(n(x-b))^{\frac{p}{q}} + c$ OR $x^{\frac{p}{q}} \rightarrow a\sqrt[q]{(n(x-b))^{p}} + c$
- **Ex3A**Q 6, 7e, 8c; **Ex3B** Q 3, 5c, 8, 9, 10 bcd, 11 cfg; **Ex 3**C Q 2a, 3, 4 befg; **Ex3D** Q 1b, 4b, 5, 7; **Ex3E** Q 1, 3 de, 4de ; **Ex3F** Q 2 abcef, 5 def

Determining rules for $f(x) = x^n$

Example: It is known that the points (1, 5) and (4, 2) lie on a curve with the equation $y = \frac{a}{x} + b$. Find the values of *a* and *b*.

Solution:

When
$$x = 1$$
, $y = 5 \Rightarrow 5 = a + b$ (1)
When $x = 4$, $y = 2 \Rightarrow 2 = \frac{a}{4} + b$ (2)
subtract (2) from (1): $3 = \frac{3a}{4}$
 $\therefore a = 4$
substitute in (1): $5 = 4 + b$
 $b = 1$
 $y = \frac{4}{x} + b$

Example 2: It is known that the points (2, 1) and (10, 6) lie on a curve with equation $y = a\sqrt{x-1}+b$. Find the equation.

Solution:

$$(2,1): 1 = a\sqrt{2-1} + b$$

$$1 = a + b \quad (1)$$

$$(10,6): 6 = a\sqrt{10-1} + b$$

$$6 = 3a + b \quad (2)$$
Subtract (1) from (2): 5 = 2a

$$\therefore a = \frac{5}{2}$$
substitute in (1): $1 = \frac{5}{2} + b$

$$b = -\frac{3}{2}$$

$$\Rightarrow y = \frac{5}{2}\sqrt{x-1} - \frac{3}{2} \quad or \quad y = \frac{5\sqrt{x-1} - 3}{2}$$

• **Ex3H** Q 1, 2, 3, 4, 5, 6, 7, 8

Transformations using Matrices:

- (x', y') is called the image of (x, y).
- the transformations are written as follows:

- You can have more than one dilation/reflection matrix.
- Remember: multiply rows by columns, add/subtract elements in the same position.
- The transformation matrices are:

Reflection in the <i>x</i> -axis	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$ (x, y) \to (x, -y) f(x) \to -f(x) $
Reflection in the y-axis	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$ (x, y) \to (-x, y) f(x) \to f(-x) $
Reflection in the line $y=x$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$ (x, y) \to (y, x) f(x) \to f(y) $
Dilation of factor <i>a</i> from the <i>x</i> -axis	$\begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}$	$ (x, y) \rightarrow (x, ay) f(x) \rightarrow af(x) $
Dilation of factor k from the y-axis (note $n = 1/k$)	$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$	$(x, y) \rightarrow (kx, y)$ $f(x) \rightarrow f\left(\frac{x}{k}\right)$
Translation Matrix (add)	$\begin{bmatrix} b \\ c \end{bmatrix}$	$ (x, y) \rightarrow (x+b, y+c) f(x) \rightarrow f(x-b)+c $

Example 1: find the image of the point (2, 3) under:

a a reflection in the *x*-axis **b** a dilation of factor 4 from the *y*-axis

	4	0	$\begin{vmatrix} 2 \\ 3 \end{vmatrix} = \begin{vmatrix} 8 \\ 3 \end{vmatrix}$
$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$	_0	1	3] [2]
$\Rightarrow (2,3) \rightarrow (2,-3)$	\Rightarrow	(2,3)	\rightarrow (8,3)

Example 2: Consider a linear transformation such that $(1, 0) \rightarrow (3, -1)$ and $(0, 1) \rightarrow (-2, 4)$. Find the

	$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} and$	
	$\Rightarrow a = 3, c = -1$	b = -2, d = 4
image of (-3, 5)		
	$\Rightarrow \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix}$	
	$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \end{bmatrix}$	$\begin{bmatrix} -19\\23 \end{bmatrix} \Rightarrow (-3,5) \rightarrow (19,-23)$

Example 3: A transformation is defined by the matrix $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Find the equation of the graph of

 $y = \sin(x) + x$, under this transformation.

Sol	ution:
501	ution.

Solution.	
1. Write the dilations in terms of matrices	$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$
2. Multiply matrices	$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} 2 \times x + 0 \times y\\0 \times x + 3 \times y\end{bmatrix} = \begin{bmatrix} 2x\\3y\end{bmatrix}$
3. Determine the result in terms of x' and	$x'=2x \qquad y'=3y$
<i>y</i> '& rearrange to make <i>x</i> and <i>y</i> the subject of each equation.	$\Rightarrow \frac{x'}{2} = x \qquad \frac{y'}{3} = y$
4. Sub each into the original equation.	$\frac{y'}{3} = \sin\left(\frac{x'}{2}\right) + \frac{x'}{2}$
5. Rearrange to make <i>y</i> ' the subject	$y' = 3\sin\left(\frac{x'}{2}\right) + \frac{3x'}{2}$
6. Then drop the '	$y = 3\sin\left(\frac{x}{2}\right) + \frac{3x}{2}$

Example 4: A transformation is described by the matrix equation A(X + B) = X', where

$$A = \begin{bmatrix} 0 & -3 \\ 2 & 0 \end{bmatrix} \quad and \quad B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Find the image of the straight line with equation y = 2x + 5 under this transformation.

 $\mathbf{A}(\mathbf{X} + \mathbf{B}) = \mathbf{X'}$

$$\begin{bmatrix} 0 & -3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$
$$\begin{bmatrix} 0 & -3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x+1 \\ y+2 \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$
$$\begin{bmatrix} -3(y+2) \\ 2(x+1) \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix} \implies x' = -3(y+2) \quad \& \quad y' = 2(x+1)$$
$$y = \frac{-x'}{3} - 2 \quad \& \quad x = \frac{y'}{2} - 1$$
Sub. into $y = 2x + 5 \dots$
$$\frac{-x'}{3} - 2 = 2\left(\frac{y'}{2} - 1\right) + 5$$
$$y' = \frac{-x'}{3} - 5$$

Ex3I Q 1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 15, 16

	p	q	Domain	Example graph	Equations
	r	4			Liquations
$\frac{p > q}{\frac{p}{q} > 1}$	<i>p</i> odd	<i>q</i> odd	R	F4+ F2+ F3 Tools Zoom Trace Restar hindth Draw Fen ::	$y = x^{3}$ $y = x^{\frac{5}{3}}$
	p odd	<i>q</i> even	$x \ge 0$	MAIN RAD AUTO FUNC F3- F2- F3 F4 F5-	$y = x^{\frac{3}{2}}$
	<i>p</i> even	<i>q</i> odd	R	Tools Zoom Trace Resr and Mathematical Fee F2451	$y = x^{2}$ $y = x^{\frac{4}{3}}$
$\frac{p < q}{\frac{p}{q} < 1}$	p odd	<i>q</i> odd	R	F1+ F2+ F3 Too1s zoom Trace Restarbh Mathlbraw Feni:: HAIN RAD AUTO FUNC	$y = x^{\frac{1}{3}}$ $y = x^{\frac{3}{5}}$
	p odd	<i>q</i> even	$x \ge 0$	Tööis zöön Tráce ne sran Máth braw Fén ::	$y = x^{\frac{1}{2}}$ $y = x^{\frac{3}{4}}$
	<i>p</i> even	<i>q</i> odd	R	Tools Zoom Trace Restrant Math Draw Fen :: Main Bab Auto Func	$y = x^{\frac{2}{3}}$

VCAA EXAM QUESTIONS for TRANSFORMATIONS 2008

2011 Question 3 **a.** Consider the function $f: R \to R, f(x) = 4x^3 + 5x - 9$. i. Find f'(x)ii. Explain why $f'(x) \ge 5$ for all x. 1 + 1 = 2 marks **b.** The cubic function *p* is defined by $p: R \to R$, $p(x) = ax^3 + bx^2 + cx + k$, where *a*, *b*, *c* and *k* are real numbers. i. If p has m stationary points, what possible values can m have? ii. If *p* has an inverse function, what possible values can *m* have? 1 + 1 = 2 marks The cubic function q is defined by $q: \mathbb{R} \to \mathbb{R}$, $q(x) = 3 - 2x^3$. c. **i.** Write down an expression for $q^{-1}(x)$. Q3ai $f(x) = 4x^3 + 5x - 9$, $f'(x) = 12x^2 + 5$ Q3aii Since $x^2 \ge 0$ for all $x, :: 12x^2 \ge 0, :: 12x^2 + 5 \ge 0 + 5$, $f'(x) \ge 5$ for all x. Q3bi Possible p(x) are: m = 0m = 2m = 1ii. Determine the coordinates of the point(s) of interse Q3bii The first two cases (m = 0 and m = 1) above are one-toone functions, .: each has an inverse function. Q3ci Let $q(x) = 3 - 2x^3 = y$, the equation of the inverse is $3-2y^3 = x$, $\therefore y^3 = \frac{3-x}{2}$, $y = \left(\frac{3-x}{2}\right)^{\frac{1}{3}}$, $\therefore q^{-1}(x) = \left(\frac{3-x}{2}\right)^{\frac{1}{3}}$ Q3cii At the intersection y = x, $\therefore x = 3 - 2x^3$, $\therefore x = 1$ and y = 1. The point of intersection is (1,1). 2 + 2 = 4 marks

 d. The cubic function g is defined by g: R→R, g(x) = x³ + 2x² + cx + k, where c and k are real numbers. i. If g has exactly one stationary point, find the value of c. 											
			024	; _ c(x)	3	1.2	2		~(n)-2-	$x^{2} + 4x + c$
				0,				,	0 (+4x+c -4(3)c=0, $\therefore c=\frac{4}{2}$
											3
			Q3d	ii g(x	$) = x^{3}$	+2x	$r^{2} + \frac{4}{3}$	$\frac{1}{3}x + 1$	k . Le	t g'(x	$) = 3x^2 + 4x + \frac{4}{3} = 0,$
ii.	If this stationary point o value of k.	ccurs at a	.: the	e statio	nary i	is at	<i>x</i> = -	$\frac{2}{3}$.			
								g(x)	and	$y = g^{-}$	$^{1}(x), y = x,$
			x^{2}	$^{3}+2x^{2}$	$+\frac{4}{3}x$: + k =	= x ,				
			$\left(-\frac{2}{3}\right)$	$\left(\frac{2}{3}\right)^3 + 2$	$\left(-\frac{2}{3}\right)$	$\Big)^2 + \frac{1}{2}$	$\frac{4}{3}(-$	$\left(\frac{2}{3}\right) + $	k = -	$\frac{2}{3}, ::$	$k = -\frac{10}{27}$
											_
										= 6 marl	
2012									Total	l 14 marl	23
Questi The fu	fon 8 notion $f: R \to R, f(x) = ax^3 + c$ real numbers $p < m < 0 < n + c$							and c a	re real 1	numbers.	
The gra	adient of the graph of $y = f(x)$ - ∞ , m) \cup (n, ∞)			Question	% A	% B	у о. % С	% D	% E	% No answer	Comments
B. (<i>n</i> C. (<i>p</i> D. (<i>p</i>	(n, n) $(p, 0) \cup (q, \infty)$ $(p, m) \cup (0, q)$ (p, q)			8	49	14	18	14	4	1	The gradient of the graph of $y = f(x)$ is negative for $(-\infty, m) \cup (n, \infty)$. There is a local minimum at x = m and a local maximum at $x = n$. Eighteen per cent of students chose option C, $(p, 0) \cup (q, \infty)$. This is when the graph of y = f(x) is negative.
The gr The va	ion 16 raph of a cubic function f has alues of c , such that the equat							at (b, –	8).		
В. с С. –	c < c < 8 c > -3 or c < -8 c < -3 c < -3 or c > 8 c < -8	16	13	17	27	3	4	8	1	when $c < 3 t$	ical maximum will be touching the <i>x</i> -axis $c = 3$, giving two distinct solutions. So if there will be one solution. The local minimu e above the <i>x</i> -axis when $c > 8$. Hence $c < 3$ of
014							1	I]
Question The point then refle	n 1 at $P(4, -3)$ lies on the graph ected in the y-axis. rdinates of the final image of		<i>f</i> . Th	ne graph o	f <i>f</i> is 1	ranslat	ed fou	r units	vertical	lly up an	d
A . (-4	, 1)										

Q1 $(4, -3) \rightarrow (4, 1) \rightarrow (-4, 1)$

A

- **B.** (-4, 3)
- **C.** (0, -3)
- **D.** (4, -6) **E.** (-4, -1)

Question 12 The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with rule $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ maps the line with equation x - 2y = 3 onto the line with equation **A.** x + y = 0Q12 $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -x+1 \\ 2y-2 \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$, $\therefore x = 1 - x'$ and $y = \frac{y'+2}{2}$ **B.** x + 4y = 0C. -x - y = 4**D.** x + 4v = -6С $\therefore x-2y=3 \rightarrow -x'-y'=4$ **E.** x - 2y = 1Question 5 (13 marks) Let $f: R \to R$, $f(x) = (x-3)(x-1)(x^2+3)$ and $g: R \to R$, $g(x) = x^4 - 8x$. a. Express $x^4 - 8x$ in the form $x(x-a)((x+b)^2 + c)$. 2 marks **b.** Describe the translation that maps the graph of y = f(x) onto the graph of y = g(x). 1 mark Q5a $g(x) = x^4 - 8x = x(x^3 - 2^3) = x(x - 2)(x^2 + 2x + 4)$ $= x(x-2)(x^{2}+2x+1-1+4) = x(x-2)(x+1)^{2}+3$ Q5b Translate the graph of y = f(x) to the left by 1. $g(x) = f(x+1) = (x+1-3)(x+1-1)((x+1)^2+3)$ Find the values of *d* such that the graph of y = f(x+d) has $=x(x-2)((x+1)^{2}+3)$ i. one positive x-axis intercept Q5ci $y = f(x+d) = (x+d-3)(x+d-1)((x+d)^2+3)$ For one positive x-intercept, $d-1 \ge 0$ and d-3 < 0 $\therefore d \ge 1$ and d < 3, i.e. $1 \le d < 3$ Q5cii For two positive x-intercepts, d-1 < 0 and d-3 < 0, d < 1 and d < 3, d < 1. ii. two positive x-axis intercepts. Q5d d. Find the value of *n* for which the equation g(x) = n has one solution. The graphs of $y = g(x) = x^4 - 8x$ and y = n intersect at one point when y = n is a tangent to y = g(x) at its minimum turning point. $g'(x) = 4x^3 - 8$ Let g'(x) = 0, $\therefore x = 2^{\frac{1}{3}}$, $n = g\left(2^{\frac{1}{3}}\right) = -6 \times 2^{\frac{1}{3}}$

e.		he point $(u, g(u))$, the gradient of $y = g(x)$ is <i>m</i> and at the po <i>n</i> , where <i>m</i> is a positive real number.	int $(v, g(v))$, the gradient
	i.	Find the value of $u^3 + v^3$.	Q5ei At $(u, g(u))$, $g'(u) = m$, $\therefore 4u^3 - 8 = m$ where $m \in R^+$ At $(v, g(v))$, $g'(v) = -m$, $\therefore 4v^3 - 8 = -m$ $\therefore 4u^3 + 4v^3 - 16 = 0$, $\therefore u^3 + v^3 = 4$
			Q5eii Solve $u^3 + v^3 = 4$ and $u + v = 1$ simultaneously by CAS. Given $g'(u) = m$ is positive, and $g'(v) = -m$ is negative, $\therefore u > v$
	ii.	Find u and v if $u + v = 1$.	Hence $u = \frac{1+\sqrt{5}}{2}$ and $v = \frac{1-\sqrt{5}}{2}$.
f.	i.	Find the equation of the tangent to the graph of $y = g(x)$ a	t the point $(p, g(p))$. 1 mark
	ii.	Find the equations of the tangents to the graph of $y = g(x)$ with coordinates $\left(\frac{3}{2}, -12\right)$.	that pass through the point 3 marks
			Q5fi $g(p) = p^4 - 8p$, $g'(p) = 4p^3 - 8$ Equation of the tangent: $y - g(p) = g'(p)(x - p)$ $y - (p^4 - 8p) = (4p^3 - 8)(x - p)$
			$\therefore y = (4p^3 - 8)x - 3p^4$ Q5fii Equation of the tangents: $y = (4p^3 - 8)x - 3p^4$
			The tangents pass through $\left(\frac{3}{2}, -12\right)$, $\therefore -12 = (4p^3 - 8)\frac{3}{2} - 3p^4$
			:: $3p^{3}(p-2)=0$, :: $p=0$ or $p=2$ The tangents are: $y=-8x$ and $y=24x-48$

