INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 5.23]

MACLAURIN SERIES – EXTENSION OF BINOMIAL THEOREM

Compiled by Christos Nikolaidis

O. Practice questions

1.	[Max	kimum mark: 7] <i>[without GDC]</i>	
	Find	the Maclaurin series of the function $f(x) = e^{2x}$ up to and including the term in x^4	
	(a)	by using the formula of the Maclaurin series $f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots$	[5]
	(b)	by using the Maclaurin series of $e^x = 1 + x + \frac{x^2}{2!} + \cdots$	[2]

2. [Maximum mark: 8] [without GDC]

Find the Maclaurin series of the function $f(x) = (2+x)^3$

(a) by using the formula of the Maclaurin series $f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots$ [5]

[3]

(b) by using the expansion of the binomial theorem.

.....

	ximum mark: 10] [without GDC]
Find	I the Maclaurin series of the function $f(x) = \frac{1}{(2+x)^2} = (2+x)^{-2}$, up to x^2
(a)	By using the formula of the Maclaurin series.
(b)	By using the extended version of the binomial theorem.
(c)	Write down the values of x for which the series converges.

4.

٢	The Maclaurin series of the function $f(x) = \sqrt{2+x} = (2+x)^{\frac{1}{2}}$, up to x^2 by using the formula of the Maclaurin series.
	by using the extended version of the binomial theorem.
r	by using the extended version of the binomial theorem.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

5. [Maximum mark: 8] [without GDC]

(a)	Find the Maclaurin series of the function $f(x) = \sqrt{x^2 + 1}$, up to and including the term in x^6 by using the extended version of the binomial theorem.	[4]
(b)	Given that $f'(x) = \frac{x}{\sqrt{x^2 + 1}}$ find the Maclaurin series of $g(x) = \frac{x}{\sqrt{x^2 + 1}}$ up to and	
	including the term in x^5 .	[4]

[Maximum mark: 17] [without GDC] 6. By using the Maclaurin series $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$, find the Maclaurin series of $f(x) = e^{-x}$ up to and including the term in x^3 . (a) [2] $f(x) = e^{-x^2}$ up to and including the term in x^6 . (b) [3] $f(x) = xe^x$ up to and including the term in x^4 . (c) [2] $f(x) = x^2 e^{-x}$ up to and including the term in x^5 . [3] (d) $f(x) = e^{x} - e^{-x}$ up to and including the term in x^{5} . [3] (e) $f(x) = (x+1)e^{4x}$ up to and including the term in x^3 . (f) [4]

٨	Even	atula supptions (SUODT)	
Α.	Exam	style questions (SHORT)	
7.	[Max	imum mark: 10] <i>[without GDC]</i>	
	(a)	Find the first three terms of the Maclaurin series for $\ln(1+e^x)$.	[6]
	(b)	Hence, or otherwise, determine the value of $\lim_{x\to 0} \frac{2\ln(1+e^x) - x - \ln 4}{x^2}$.	[4]

.....

8.	[Max	imum mark: 10] <i>[without GDC]</i>	
	The	function <i>f</i> is defined by $f(x) = \ln\left(\frac{1}{1-x}\right)$.	
	(a)	Write down the value of the constant term in the Maclaurin series for $f(x)$.	[1]
	(b)	Find the first three derivatives of $f(x)$ and hence show that the Maclaurin series	
		for $f(x)$ up to and including the x^3 term is $x + \frac{x^2}{2} + \frac{x^3}{3}$.	[6]
	(c)	Use this series to find an approximate value for $\ln 2$.	[3]

9.	[Max	imum mark: 10] <i>[without GDC]</i>
	Let	$f(x) = \ln(1 + \sin x) .$
	(a)	Show that $f''(x) = \frac{-1}{1 + \sin x}$
	(b)	Find the third and the fourth derivatives of f
	(c)	Hence, find the Maclaurin series, up to the term in x^4 , for $f(x)$.

10.		imum mark: 7] <i>[without GDC]</i>
	The	variables x and y are related by the differential equation $\frac{dy}{dx} - y \tan x = \cos x$.
	(a)	Find the Maclaurin series for y up to and including the term in x^2 given that
		$y = -\frac{\pi}{2}$ when $x = 0$.
	(b)	Show that an approximation for <i>y</i> when $x = 0.1$ is $y \approx 0.1 - \frac{201\pi}{400}$
		-00

[5] [2]

		[MAA 5.23] MACLAURIN SERIES – EXTENSION OF BINOMIAL THEOREM
11.	[Max (a)	kimum mark: 7] <i>[without GDC]</i> Using the extended version of the binomial theorem, find the Maclaurin series of
	(u)	$f(x) = \frac{1}{3x+5}$
		up to the term in x^3 ;
	(b)	Find the values of x for which the series converges.

.....

.....

.....

.....

12.	[Max	kimum mark: 8] <i>[without GDC]</i>	
	(a)	Using the extended version of the binomial theorem, find the Maclaurin series of	
		$f(x) = \sqrt{3x+5}$	
		up to the term in x^3 ;	[6]
	(b)	Find the values of x for which the series converges.	[2]

B. Exam style questions (LONG)

It is given that the Maclaurin series of the function $f(x) = \ln(1 + \sin x)$, up to the term in

 x^4 is

$$f(x) = x - \frac{1}{2}x^{2} + \frac{1}{6}x^{3} - \frac{1}{12}x^{4} + \dots$$

- (a) Deduce the Maclaurin series, up to and including the term in x^4 for
 - (i) $y = \ln(1 \sin x);$
 - (ii) $y = \ln \cos x$;
- (iii) $y = \ln \sec x$; [8] (b) By differentiating the Maclaurin series of $y = \ln \cos x$, deduce the Maclaurin series

of
$$y = \tan x$$
 [4]

(c) Hence calculate the limits (i)
$$\lim_{x \to 0} \frac{\ln \sec x}{x\sqrt{x}}$$
. (ii) $\lim_{x \to 0} \left(\frac{\tan(x^2)}{\ln \cos x}\right)$ [6]

(d) By considering the difference of the two series of

$$y = \ln(1 + \sin x) \qquad \text{and} \qquad y = \ln(1 - \sin x)$$

deduce that $\ln 3 \approx \frac{\pi}{3} \left(1 + \frac{\pi^2}{216} \right).$ [4]

(a)	Given that $y = \ln \cos x$, show that the first two non-zero terms of the Maclaurin
	series for y are $-\frac{x^2}{2}-\frac{x^4}{12}$.
(b)	Use this series to find an approximation in terms of π for $\ln 2$.