CIRCULAR FORCES EQUATIONS

If the tangential acceleration is zero, the angular speed is constant.

horizontal circle

$$
\sum F_{r}=T \cos (\phi)=\frac{m v^{2}}{R} \quad \sum F_{z}=T \sin (\phi)-m g=0 \quad \sum F_{t a n}=0
$$

Here φ is the angle in the vertical direction. This is assumed to be negligible (zero), if the mass is small.

vertical circle, constant speed

$$
\begin{array}{lll}
\text { TOP } \sum F_{r}=F_{N}(\text { or } \mathrm{T})+m g=\frac{m v^{2}}{R} & \sum F_{z}=0 & \sum F_{t a n}=0 \\
\text { BOT } \sum F_{r}=F_{N}(\text { or T })-m g=\frac{m v^{2}}{R} & \sum F_{z}=0 & \sum F_{\text {tan }}=0
\end{array}
$$

vertical circle, nonconstant speed (gravitational acceleration)

$$
\sum F_{r}=F_{N}(\text { or } \mathrm{T})-m g \cos \left(\theta_{t}\right)=\frac{m v_{t}^{2}}{R} \quad \sum F_{z}=0 \quad \sum F_{t a n}=m g \sin \left(\theta_{t}\right)=m a_{t a n}(t)
$$

Here θ is the angle of the position vector, measured from the vertical. The time- (and angle-) dependent tangential acceleration leads to a nonlinear second-order differential equation for the angular position as a function of time, the solution to which is complicated. Thus in these problems the angle and velocity will be provided. The mathematics of this case is the same as for a pendulum.
round room

$$
\sum F_{r}=F_{N}=\frac{m v^{2}}{R} \quad \sum F_{z}=\mu F_{N}-m g=0 \quad \sum F_{t a n}=0
$$

conical pendulum

$$
\sum F_{r}=T \sin (\theta)=\frac{m v^{2}}{R} \quad \sum F_{z}=T \cos (\theta)-m g=0 \quad \sum F_{t a n}=0
$$

The angle θ is measured from the vertical.

curve, no banking

$$
\sum F_{r}=\mu F_{N}=\frac{m v^{2}}{R} \quad \sum F_{z}=F_{N}-m g=0 \quad \sum F_{t a n}=0
$$

curve, banked (no friction)

$$
\sum F_{r}=F_{N} \sin (\theta)=\frac{m v^{2}}{R} \quad \sum F_{z}=F_{N} \cos (\theta)-m g=0 \quad \sum F_{t a n}=0
$$

