(IMO 1998 Hong Kong Preliminary Selection Contest)

In $\triangle A B C, E, F, G$ are points on $A B, B C, C A$ respectively such that $A E: E B=B F: F C=C G: G A=$ 1:3. K, L, M are the intersection points of the lines $A F$ and $C E, B G$ and $A F, C E$ and $B G$, respectively. Suppose the area of $\triangle A B C$ is 1 ; find the area of $\triangle K L M$.

Solution

Let the area of $\Delta \mathrm{ABL}=\mathrm{s}$
Then area of $\triangle \mathrm{CAL}=3 \mathrm{~s} \quad\left[\mathrm{Using} \frac{\text { Area } B A L}{\text { Area } C A L}=\frac{1}{3}\right.$]
and area of $\triangle \mathrm{BCL}=\frac{1}{3} s \quad\left[\right.$ Using $\frac{\text { Area } B C L}{\text { Area } A B L}=\frac{1}{3}$]
Area of $\Delta \mathrm{ABC}=$ Area $\Delta \mathrm{ABL}+\Delta \mathrm{CAL}+\Delta \mathrm{BCL}=\mathrm{s}+3 \mathrm{~s}+\frac{1}{3} s=\frac{13}{3} s=1$
\Rightarrow Area of $\triangle \mathrm{ABL}=\frac{3}{13}$
Similarly, using the same argument Area of $\triangle \mathrm{BCM}=\frac{3}{13}$ and Area of $\triangle \mathrm{CAK}=\frac{3}{13}$
Thus Area of $\Delta \mathrm{KLM}=1-\frac{9}{13}=\frac{4}{13}$
$\frac{\text { Area } A B C}{\text { Area } K L M}=\frac{13}{4}$

