[MAA 1.2-1.3] ARITHMETIC SEQUENCES

SOLUTIONS

Compiled by: Christos Nikolaidis

O. Practice questions

SEQUENCES (IN GENERAL)

1.	(a) $u_1 = 2$, $S_1 = 2$.
	(b) $u_1 = 5$, $S_2 = 7$.
	(c) $S_5 = 2 + 5 + 10 + 3 + 7 = 27$.
•	-
2.	(a) $u_2 = 2$, $u_{20} = 20$.
	(b) $S_5 = 1 + 2 + 3 + 4 + 5 = 15$.
	(c) $u_n = n$.
3.	(a) 10, 20, 30
	(b) $u_{10} = 100$
	(c) $S_1 = 10$, $S_2 = 30$, $S_3 = 60$
4.	(a) 10, 40, 90 (b) m = 1000
	(b) $u_{10} = 1000$
	(c) $S_1 = 10$, $S_2 = 50$, $S_3 = 140$
5.	(a) 10, 100, 1000
	(b) $u_{10} = 10,000,000,000$
	(c) $S_1 = 10$, $S_2 = 110$, $S_3 = 1110$
6.	(a) 10, 20, 30
	(b) $S_1 = 10$, $S_2 = 30$, $S_3 = 60$
7.	(a) 10, 30, 70
	(b) $S_1 = 10$, $S_2 = 40$, $S_3 = 110$
8.	(a) $\sum_{r=1}^{3} (2r) = 2 + 4 + 6 = 12$
0.	(a) $\sum_{r=1}^{\infty} (2r) = 2 + 4 + 6 = 12$
	(b) $\sum_{r=1}^{3} r^2 = 1 + 4 + 9 = 14$
	(b) $\sum_{r=1}^{r} r^{r} - 1 + 4 + 9 - 14$
	(c) $\sum_{r=2}^{3} 2^{r} = 2 + 4 + 8 = 14$
	(c) $\sum_{r=1}^{2} 2^{r} - 2^{r} + 4^{r} + 6^{r} - 14^{r}$
	$\frac{10}{20}$
9.	(a) $A = \sum_{n=1}^{10} (2r^2 + 1) = 780$, $B = \sum_{n=1}^{20} (2r^2 + 1) = 5760$,
	r=1 $r=1$
	$C = \sum_{r=11}^{20} (2r^2 + 1) = 4980$
	r=11
	(b) $A + C = B$ or $C = B - A$

ARITHMETIC SEQUENCES

10. $u_1 = 11$, d = 4. (a) $u_{101} = 11 + 100 \times 4 = 411$, $S_{101} = \frac{101}{2}(11 + 411) = 21311$ (b) $S_{20} = \frac{20}{2} (2 \times 11 + 19 \times 4) = 980$ (c) $u_n = 11 + (n-1)4 = 11 + 4n - 4 = 4n + 7$ (d) $u_n = 51 \Leftrightarrow 4n + 7 = 51 \Leftrightarrow 4n = 44 \Leftrightarrow n = 11$ 11. (a) d=8 (b) 75 (c) 385 (d) n=21(a) $u_1 = 10$ d=5 (b) $u_n = 5n+5$ (c) $S_n = \frac{n}{2}(5n+15)$ (d) $u_n = 105$ and $S_{20} = 1150$ 12. (a) $u_1 = 10$ $u_2 = 15$ (b) d=5 (c) $S_3 = 45$ $S_4 = 70$ (d) $S_n = \frac{n}{2}(5n+15)$ 13. 14. (a) (i) 15 (ii) 40400 (iii) 40385 (b) 30200 15. (a) 23 (b) 99 (c) 1265

A. Exam style questions (SHORT)

16. (a)
$$u_1 = 7, d = 2.5$$

 $u_{41} = u_1 + (n-1)d = 7 + 40 \times 2.5 = 107$
(b) $S_{101} = \frac{101}{2} [2(7) + 100 \times 2.5] = \frac{101(264)}{2} = 13332$

17.
$$S_5 = \frac{5}{2} \{2 + 32\} = 85$$

OR
 $a = 2, a + 4d = 32 \Longrightarrow 4d = 30 \Longrightarrow d = 7.5$
 $S_5 = \frac{5}{2} (4 + 4(7.5)) = \frac{5}{2} (4 + 30) = 85$

18. (a)
$$u_3 = u_1 + 2d \iff 8 = 2 + 2d \iff d = 3$$

(b) $u_{20} = 2 + 19 \times 3 = 59$
(c) $S_{20} = \frac{20}{2} (2 + 59) = 610$ OR $S_{20} = \frac{20}{2} (2 \times 2 + 19 \times 3) = 610$

19.
$$u_4 = 40 \iff 5 + 3d = 40 \iff d = \frac{35}{3}$$

 $u_2 = 5 + \frac{35}{3} = \frac{50}{3}$
20. Arithmetic sequence

20. Arithmetic sequence $u_1 = 200$ d = 30

(a) Distance in final week = $200 + 51 \times 30 = 1730$ m

(b) Total distance =
$$\frac{52}{2}$$
 [2×200 + 51×.30] = 50180m

21. (a) Arithmetic sequence
*u*₁=15 *d* = 2 *n* = 20
*u*₂₀=15 + 19 × 2 = 53 (that is, 53 seats in the 20th row)
 (b) *S*₂₀ = 20/2 (2×15 + 19 × 2) (or 20/2 (15 + 53))
 = 680 (that is, 680 seats in total)
22. (a) *u*₁ = 1000, *u*_n = 1000 + (*n* − 1)250 = 10 000
n = 37.
 She runs 10 km on the 37th day.
 (b) *S*₃₇ =
$$\frac{37}{2}$$
 (1000 + 10 000) = 203 500. She has run a total of 203.5 km
23. (a) *T*₁ = 100 *d* = 25
*T*₁₇ = 100 + 16×25 = 8500
 (b) *S*₁₇ = $\frac{17}{2}$ (100 + 500) = \$5100
24. (a) 45000 + 4 × 1750 = 52000 USD
 (b) $\frac{10}{2}$ (2(45000) + 9 × (1750)) = 528750 USD (Accept 529000)
25. (a) 20 = *u*₁ + 3*d*
 32 = *u*₁ + 7*d*
d = 3 (and *u*₁ = 11)
 (b) $\frac{10}{2}$ (2 × 11 + 9 × 3) = 245
26. (a) *u*₂₁ = 24 + 20 × (16) = 344
 (b) *S*₃₁ = $\frac{31}{2}$ [2(24) + (30)(16)] = 8184
27. (a) *u*₂₀ = *u*₁ + 19*d* ⇔ 64 = 7 + 19*d*, *d* = $\frac{64 - 7}{19}$ = 3
 (b) *u*_n = 3709 ⇔ 3709 = 7 + 3(*n* − 1) ⇔ *n* = 1235
28. *u*₂ = *u*₁ + *d* = 7 and *S*₄ = $\frac{4}{2}$ (2*u*₁ + 3*d*) = 12
 ⇒ $\frac{u_1 + d = 7}{4u_1 + 6d = 12}$ ⇒ *u*₁ = 15, *d* = -8
29. *u*₂ = *u*₁ + *d* ⇒ *u*₁ + *d* = 7
*S*₅ = $\frac{5}{2}$ (2*u*₁ + 4*d*) = 50 ⇒ 2*u*₁ + 4*d* = 20
d=3

30. (a) *u*₂₇=263 ⇔ 263 = *u*₁ + 26 × 11 ⇔ *u*₁ = -23
 (b) (i) S16 = -23 + (*n* − 1) × 11 ⇔ *n* = 50
 (ii) *S*₅₀ = $\frac{50(-23 + (n - 1) × 11 ⇔ n = 50}{(ii) S_{50}} = \frac{50(-23 + (n - 1) × 11 ⇔ n = 50}{(ii) S_{50}} = \frac{50(-23 + (n - 1) × 11 ⇔ n = 50}{(ii) S_{50}} = \frac{50(-23 + (n - 1) × 11 ⇔ n = 50}{(ii) S_{50}} = \frac{50(-23 + (n - 1) × 11 ⇔ n = 50}{(ii) S_{50}} = \frac{50(-23 + (n - 1) × 11 ⇔ n = 50}{(ii) S_{50}} = \frac{50(-23 + (n - 1) × 11 ⇔ n = 50}{(ii) S_{50}} = \frac{50(-23 + (n - 1) × 11 ⇔ n = 50}{(ii) S_{50}} = \frac{50(-23 + (n - 1) × 11 ⇔ n = 50}{(ii) S_{50}} = \frac{50(-23 + (n - 1) × 11 ⇔ n = 50}{(ii) S_{50}} = \frac{$

31. (a)
$$d=3$$

 $u_{101} = 2 + 100 \times 3 = 302$
(b) $152 = 2 + (n-1) \times 3 \Leftrightarrow 150 = (n-1) \times 3 \Leftrightarrow 50 = n-1 \Leftrightarrow n = 51$

32. (a)
$$S_n = \frac{n}{2} (2 \times 2 + 3(n-1)) = \frac{n}{2} (3n+1)$$

(b) $\frac{n}{2} (3n+1) = 1365 \Rightarrow 3n^2 + n - 2730 = 0$

=>
$$n = 30$$
 or $n = \frac{-91}{3}$, hence $n = 30$

33. (a)
$$u_4 = u_1 + 3d \Leftrightarrow 16 = -2 + 3d \Leftrightarrow d = 6$$

(b)
$$u_n = u_1 + (n-1) 6 \Leftrightarrow 11998 = -2 + (n-1)6 \Leftrightarrow n = \frac{11998 + 2}{6} + 1 = 2001$$

34. (a) (i)
$$-37 = u_1 + 20d$$

 $-3 = u_1 + 3d$
 $-34 = 17d \Leftrightarrow d = -2$
(ii) $-3 = u_1 - 6 \Rightarrow u_1 = 3$

(b)
$$u_{10} = 3 + 9 \times -2 = -15$$

 $S_{10} = \frac{10}{2} (3 + (-15)) = -60$

35. (a)
$$\frac{20}{2} \{2(-7) + 19d\} = 620 \Leftrightarrow d = 4$$

(b)
$$u_{78} = -7 + 77(4) = 301$$

(b) (i) sum of an AP
$$\sum_{n=1}^{20} 3n \cdot \frac{20}{2} 2 \times 3 + (20-1) \times 3 = 630$$

(ii) METHOD 1

$$\sum_{n=1}^{100} 3n = \frac{100}{2} (2 \times 3 + 99 \times 3) = 15150$$
$$\sum_{n=21}^{100} 3n = 15150 - 630 = 14520$$

METHOD 2

first term is 63, the number of terms is 80

$$\sum_{n=21}^{100} 3n = \frac{80}{2} (63 + 300) = 14520$$

37. (a)
$$u_1 = 1, u_2 = -1, u_3 = -3$$

(b) $S_{20} = \frac{20}{2} (2 \times 1 + 19 \times -2) (= 10(2 - 38)) = -360$

38. (a)
$$d=2$$

(b) (i) $5+2n=115 \Rightarrow n=55$
(ii) $u_1=7$
 $S_{55} = \frac{55}{2}(7+115) = 3355$ OR $S_{55} = \frac{55}{2}(2(7)+54(2)), = 3355$ OR $\sum_{k=1}^{55}(5+2k) = 3355$

39. (a) common difference is 6

(b)
$$u_n = 1353 \Leftrightarrow 1353 = 3 + (n-1)6 \Leftrightarrow n = 226$$

(c) $S_{226} = \frac{226(3+1353)}{2}$ OR $S_{226} = \frac{226}{2}(2 \times 3 + 225 \times 6)$
 $S_{226} = 153\ 228$ (153 000 is also accepted)

40. METHOD 1

substituting into formula for S_{40} : 1900 = $\frac{40(u_1 + 106)}{2}$ \Leftrightarrow $u_1 = -11$ substituting into formula for u_{40} : 106 = -11 + 39d \Leftrightarrow d = 3

METHOD 2

substituting into formulas for S_{40} and u_{40} $20(2u_1 + 39d) = 1900$ $u_1 + 39d = 106$ Solution: $u_1 = -11$, d = 3

- **41.** (a) $u_{20} = u_1 + 19d \iff 64 = 7 + 19d, \iff d = 3$
 - (b) $3709 = 7 + 3(n-1) \Leftrightarrow 3709 = 3n + 4 \Leftrightarrow n = 1235$
- **42.** (a) n=21 (b) 1575
- 43. (a) $u_1 = 5$ and d = 8 $u_n = u_1 + (n-1)d \Rightarrow u_n = 8n - 3$ (b) $8n - 3 < 400 \Rightarrow 8n < 403$ n < 50.375Therefore, there are 50 terms less than 400.

44. (a)
$$u_1 = S_1 = 7$$

(b) $u_2 = S_2 - u_1 = 18 - 7 = 11$
 $d = 11 - 7 = 4$
(c) $u_4 = u_1 + (n-1)d = 7 + 3(4)$
 $u_4 = 19$

45. Arithmetic sequence
$$d = 3$$

 $n = 1250$
 $S = \frac{1250}{2}(3 + 3750) = 2\ 345\ 625\ \mathbf{OR}$ $S = \frac{1250}{2}(6 + 1249 \times 3) = 2\ 345\ 625$

46.
$$81 = \frac{n}{2}(1.5 + 7.5) \Rightarrow n = 18$$

 $1.5 + 17d = 7.5 \Rightarrow d = \frac{6}{17}$

47.
$$17 + (n-1)10 = 417 \Leftrightarrow 10(n-1) = 400$$
 so $n = 41$
 $S_{41} = \frac{41}{2}(2(17) + 40(10)) = 41(17 + 200) = 8897$ OR $S_{41} = \frac{41}{2}(17 + 417) = \frac{41}{2}(434) = 8897$

48. (a) n = 51, $S_{51} = 4182$ (b) $\sum_{r=1}^{51} (3r+4) = 4182$ (it is same sum!)

49. (a)
$$u_n = 5 + 4(n-1) = 4n + 1$$

(b) $\sum_{r=1}^{21} (4r+1)$

- 50. Arithmetic progression: 85, 78, 71, ... $u_1 = 85, d = -7$ $u_n = 85 - 7(n-1) = 92 - 7n \quad u_n > 0 \Longrightarrow n \le 13.$ $S_{13} = \frac{13}{2}(u_1 + u_{13}) = \frac{13}{2}(85 + 1) = 559$
- 51. $4^{\text{th}} \text{ term} = a + 3d$ $8^{\text{th}} \text{ term} = a + 7d$ $20^{\text{th}} \text{ term} = a + 19d$ We have two relations: $a + 7d = 2(a + 3d) \Leftrightarrow a + 7d = 2a + 6d \Leftrightarrow a = d$ a + 19d = 4000The solution is d = 200 (and a = 200)
- 52. $u_1 = -6$ and d = 7

$$S_n = \frac{n}{2}(2u_1 + (n-1)d) \Rightarrow S_n = \frac{n}{2}(7n-19)$$

Solving $S_n > 10000 \implies n > 54.8$, The least number of terms is 55

53. (a)
$$(2a+4) - (a+3) = (a+9) - (2a+4) \Leftrightarrow 2a = 4 \Leftrightarrow a = 2$$

(b) the terms are 5, 9, 11 which are indeed in AS with d = 2

54.
$$(2a+b+7) - (a-b) = (a-b) - 2$$

 $(a-3b) - (2a+b+7) = (2a+b+7) - (a-b)$
 $0 = 2a+6b+14$
 $b = -3$ $a = 2$

55. Let a be the first term and d be the common difference of the arithmetic sequence.

Then $\frac{a+4d}{a+11d} = \frac{6}{13}$ So $13a + 52d = 6a + 66d \Rightarrow 7a = 14d \Rightarrow a = 2d$. Since each term is positive, both *a* and *d* are positive. We are given a(a+2d) = 32, setting a = 2d, we get $2d(2d+2d) = 8d^2 = 32$. $\Rightarrow d = \pm 2$. Hence, d = 2 and a = 4 and sum to 100 terms of this sequence is $\frac{100}{2} \{(2)(4) + (100 - 1)2\} = 10\ 300$ (a) $S_1=1, S_2=8$, hence $u_1=1, u_2=7$

56. (a)
$$S_1=1, S_2=8$$
, hence $u_1=1, u_2=7$
(b) $u_n = S_n - S_{n-1} = [3n^2 - 2n] - [3(n-1)^2 - 2(n-1)] = 6n - 5$
OR
 $u_n = 1 + 6(n-1) = 6n - 5$

57. (a)
$$S_n = 2n^2 - n$$

 $n=1 \Rightarrow S_1 = u_1 = 2 - 1 = 1$
 $n=2 \Rightarrow S_2 = u_1 + u_2 = 8 - 2 = 6 \Rightarrow u_2 = 5$
 $n=3 \Rightarrow S_3 = u_1 + u_2 + u_3 = 18 - 3 = 15 \Rightarrow u_3 = 9$
(b) $u_n = S_n - S_{n-1}$
 $\Rightarrow u_n = 2n^2 - n - (2(n-1)^2 - (n-1))$
 $\Rightarrow u_n = 2n^2 - n - (2n^2 - 4n + 2 - n + 1)$
 $\Rightarrow u_n = 4n - 3$

58. (a) $S_4 = 68$ $S_5 = 105$ $u_5 = 37$ (b) $u_n = 8n - 3$ (c) $u_n - u_{n-1} = 8$

B. Exam style questions (LONG)

59.

60. (a) $u_1 = 1, n = 20, u_{20} = 20 (u_1 = 1, n = 20, d = 1)$ $S_{20} = \frac{(1+20)20}{2} (\text{or } S = \frac{20}{2} (2 \times 1 + 19 \times 1)) = 210$

(b) Let there be *n* cans in bottom row

(a) 24 (b) 97 (c) 1224 (d) 21

$$S_{n} = 3240 \Leftrightarrow \frac{(1+n)n}{2} = 3240 \Leftrightarrow n^{2} + n - 6480 = 0 \Leftrightarrow n = 80 \text{ or } n = -81$$

So $n = 80$

(c) (i)
$$S = \frac{(1+n)n}{2} \iff 2S = n^2 + n \iff n^2 + n - 2S = 0$$

(ii) METHOD 1

Substituting S = 2100: $n^2 + n - 4200 = 0 \iff n = 64.3, n = -65.3$

n must be a (positive) integer, this equation does not have integer solutions.

METHOD 2

Trial and error: $S_{64} = 2080$, $S_{65} = 2145$ integer not possible here

61. (a)
$$u_1 = 1, d = 3$$
 $u_{11} = 31$
(b) $S_n = \frac{n}{2}(2 + (n - 1) \times 3) = \frac{n}{2}(2 + 3n - 3) = \frac{n}{2}(3n - 1).$
(c) (i) $\frac{100}{2}(3 \times 100 - 1) = 14950$
(d) (i) $\frac{n}{2}(3n - 1) = 477 \Leftrightarrow 3n^2 - n = 954 \Leftrightarrow 3n^2 - n - 954 = 0$
(ii) 18

62. (a)
$$(5k-2) - (2k+3) = (10k-15) - (5k-2)$$

 $\Leftrightarrow 5k-2-2k-3 = 10k-15-5k+2$
 $\Leftrightarrow 3k-5 = 5k-13 \iff -2k = -8 \text{ or } 2k = 8$
 $\Leftrightarrow k = 4$
(b) 11, 18, 25
(c) 7
(d) $U_{20} = 11 + 19 \times 7 = 144$

(e)
$$S_{15} = \frac{15}{2} (2 \times 11 + 14 \times 7) = 900$$

(b) $x^2 - (x^2 - 3) = 4x - x^2 \Leftrightarrow x^2 - 4x^2 + 3 = 0 \Leftrightarrow x = 1 \text{ or } x = 3$ So the other value is 1.

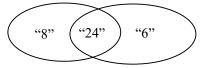
(d) (i) -2, 1, 4
(ii) 3
(iii)
$$-2 + 1 + 4 + 7 = 10$$

64. The multiples of 8 form an arithmetic sequence and have the form
$$8n$$

(a)
$$\frac{900}{8} = 112.5$$
, hence $\sum_{n=1}^{112} 8n = 50624$

(b)
$$\frac{100}{8} = 12.5$$
 hence $\sum_{x=13}^{112} 8n = 50000$

For the remaining questions it helps to draw a Venn diagram for the multiples of 8 and 6:



(c) The common multiples are the multiples of 24. $\frac{900}{24} = 37.5$, hence $\sum_{n=1}^{37} 24n = 16872$

(d)
$$\sum_{x=13}^{112} 8n - \sum_{x=1}^{37} 24n = 50624 - 16872 = 33752$$

(e)
$$\frac{900}{6} = 150$$
 hence the sum of the multiples of 6 is
$$\sum_{n=1}^{149} 6n = 67050$$

The sum of all multiples either of 8 or of 6 is
$$\sum_{x=13}^{112} 8n + \sum_{n=1}^{149} 6n - \sum_{x=1}^{37} 24n = 50624 + 67050 - 16872 = 100802$$

- **65.** The sizes form an AS with $u_1 = 1$ and d = 3
 - (a) (i) the 20th group contains $u_{20} = 1 + 19 \times 3 = 58$ numbers (ii) the last term of the 20th group is $S_{20} = 590$
 - (b) (i) the nth group contains $u_n = 1 + (n-1)3 = 3n-2$ numbers

(ii) the last term of the nth group is $S_n = \frac{n}{2}(u_1 + u_n) = \frac{n}{2}(1 + 3n - 2) = \frac{n(3n - 1)}{2}$

(c) the first term of the 20th group is $S_{19} + 1 = 533$

(d) the sum of the terms in the 20th group is
$$\frac{58}{2}(533+590) = 32567$$