Формальное доказательство.

Пусть дан шестиугольник ABCDEF. Пусть $X = AF \cap CD$, $Y = AB \cap ED$, $Z = BC \cap FE$ — точки пересечения пар противоположных сторон этого шестиугольника. Пересечём описанную окружность треугольника BYE вторично с прямой XY в точке R, отличной от Y.

Тогда $\angle(XR,RE)=\angle(YR,RE)=\angle(YB,BE)=\angle(AB,BE)=\angle(AF,FE)=\angle(XF,FE)$. То есть, точки R, F, E и X лежат на одной окружности. Назовём её γ_1 . Аналогично, $\angle(XR,RB)=\angle(YR,RB)=\angle(YE,EB)=\angle(DE,EB)=\angle(DC,CB)=\angle(XC,CB)$. Откуда получаем, что точки R, B, C и X лежат на одной окружности. Назовём её γ_2 .

Осталось заметить, что FE, RX (она же YX) и BC — радикальные оси описанной окружности исходного шестиугольника и окружностей γ_1 и γ_2 , а значит, пересекаются в одной точке, ч. т. д.