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The line 2x � y � 0
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Figure 1. 54
A normal vector n

The Latin word norma refers to a
carpenter’s square, used for draw-
ing right angles. Thus, a normal
vector is one that is perpendicular
to something else, usually a plane.

Lines and Planes
We are all familiar with the equation of a line in the Cartesian plane. We now want to
consider lines in �2 from a vector point of view. The insights we obtain from this
approach will allow us to generalize to lines in �3 and then to planes in �3. Much of
the linear algebra we will consider in later chapters has its origins in the simple geom-
etry of lines and planes; the ability to visualize these and to think geometrically about
a problem will serve you well.

Lines in �2 and �3

In the xy-plane, the general form of the equation of a line is ax � by � c. If b 
 0, then
the equation can be rewritten as y � �(a/b)x � c/b, which has the form y � mx � k.
[This is the slope-intercept form; m is the slope of the line, and the point with coordi-
nates (0, k) is its y-intercept.] To get vectors into the picture, let’s consider an example.

The line � with equation 2x � y � 0 is shown in Figure 1.53. It is a line with slope �2
passing through the origin. The left-hand side of the equation is in the form of a dot

product; in fact, if we let and then the equation becomes n � x � 0.

The vector n is perpendicular to the line—that is, it is orthogonal to any vector x that
is parallel to the line (Figure 1.54)—and it is called a normal vector to the line. The
equation n � x � 0 is the normal form of the equation of �.

Another way to think about this line is to imagine a particle moving along the
line. Suppose the particle is initially at the origin at time t � 0 and it moves along
the line in such a way that its x-coordinate changes 1 unit per second. Then at t � 1
the particle is at (1, �2), at t � 1.5 it is at (1.5, �3), and, if we allow negative values
of t (that is, we consider where the particle was in the past), at t � �2 it is (or was) at

x � c x
y
d ,n � c 2

1
d
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Section 1.3 Lines and Planes 35

(�2, 4). This movement is illustrated in Figure 1.55. In general, if x � t, then y � �2t,
and we may write this relationship in vector form as 

What is the significance of the vector It is a particular vector parallel

to �, called a direction vector for the line. As shown in Figure 1.56, we may write the
equation of � as x � td. This is the vector form of the equation of the line.

If the line does not pass through the origin, then we must modify things
slightly.

d � c 1

�2
d ?

c x
y
d � c t

�2t
d � t c 1

�2
d
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Figure 1. 56
A direction vector d

Consider the line � with equation 2x � y � 5 (Figure 1.57). This is just the line from
Example 1.26 shifted upward 5 units. It also has slope �2, but its y-intercept is the
point (0, 5). It is clear that the vectors d and n from Example 1.26 are, respectively, a
direction vector and a normal vector for this line too.

Thus, n is orthogonal to every vector that is parallel to �. The point P � (1, 3) is
on �. If X � (x, y) represents a general point on �, then the vector x � p is
parallel to � and n � (x � p) � 0 (see Figure 1.58). Simplified, we have n � x � n � p.
As a check, we compute

Thus, the normal form n � x � n � p is just a different representation of the general
form of the equation of the line. (Note that in Example 1.26, p was the zero vector, so
n � p � 0 gave the right-hand side of the equation.)

n # x � c 2
1
d # c x

y
d � 2x � y  and  n # p � c 2

1
d # c 1

3
d � 5

PX
!
�
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36 Chapter 1 Vectors
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Figure 1. 57
The line 2x � y � 5
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Figure 1. 58
n � (x � p) � 0

These results lead to the following definition.

Definition The normal form of the equation of a line � in �2 is

n � (x � p) � 0 or n � x � n � p

where p is a specific point on � and n 
 0 is a normal vector for �.

The general form of the equation of � is ax � by � c, where is a nor-
mal vector for �.

Continuing with Example 1.27, let us now find the vector form of the equation
of �. Note that, for each choice of x, x � p must be parallel to—and thus a multiple
of—the direction vector d. That is, x � p � td or x � p � td for some scalar t. In
terms of components, we have

(1)

or x � 1 � t
(2)y � 3 � 2t

Equation (1) is the vector form of the equation of �, and the componentwise equa-
tions (2) are called parametric equations of the line. The variable t is called a parameter.

How does all of this generalize to �3? Observe that the vector and parametric
forms of the equations of a line carry over perfectly. The notion of the slope of a line
in �2—which is difficult to generalize to three dimensions—is replaced by the more
convenient notion of a direction vector, leading to the following definition.

Definition The vector form of the equation of a line � in �2 or �3 is

x � p � td

where p is a specific point on � and d 
 0 is a direction vector for �.
The equations corresponding to the components of the vector form of the

equation are called parametric equations of �.

c x
y
d � c 1

3
d � t c 1

�2
d

n � c a
b
d

The word parameter and the corre-
sponding adjective parametric
come from the Greek words para,
meaning “alongside,” and metron,
meaning “measure.” Mathemati-
cally speaking, a parameter is a
variable in terms of which other
variables are expressed—a new
“measure” placed alongside
old ones.
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Section 1.3 Lines and Planes 37

We will often abbreviate this terminology slightly, referring simply to the general,
normal, vector, and parametric equations of a line or plane.

Find vector and parametric equations of the line in �3 through the point P � (1, 2, �1),

parallel to the vector 

Solution The vector equation x � p � td is

The parametric form is x � 1 � 5t

y � 2 �  t

z � �1 � 3t

Remarks
• The vector and parametric forms of the equation of a given line � are not

unique—in fact, there are infinitely many, since we may use any point on � to deter-
mine p and any direction vector for �. However, all direction vectors are clearly mul-
tiples of each other.

In Example 1.28, (6, 1, 2) is another point on the line (take t � 1), and is
another direction vector. Therefore,

gives a different (but equivalent) vector equation for the line. The relationship
between the two parameters s and t can be found by comparing the parametric
equations: For a given point (x, y, z) on �, we have

x � 1 � 5t � 6 � 10s

y � 2 �  t � 1 � 2s

z � �1 � 3t � 2 �  6s

implying that

�10s � 5t � 5

2s � t � �1

�6s � 3t � 3

Each of these equations reduces to t � 1 � 2s.

£xy
z

§ � £61
2

§ � s £ 10

�2

6

§
£ 10

�2

6

§

£ xy
z

§ � £ 1

2

�1

§ � t £ 5

�1

3

§

d � £ 5

�1

3

§ .
Example 1. 28
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38 Chapter 1 Vectors

Example 1. 29

n

Figure 1. 59
n is orthogonal to infinitely many
vectors

P

X

n

x � p
�

Figure 1. 60
n � (x � p) � 0

• Intuitively, we know that a line is a one-dimensional object. The idea of
“dimension” will be clarified in Chapters 3 and 6, but for the moment observe that
this idea appears to agree with the fact that the vector form of the equation of a line
requires one parameter.

One often hears the expression “two points determine a line.” Find a vector equation
of the line � in �3 determined by the points P � (�1, 5, 0) and Q � (2, 1, 1).

Solution We may choose any point on � for p, so we will use P (Q would also be
fine).

A convenient direction vector is (or any scalar multiple of this).
Thus, we obtain

x � p � td

Planes in �3

The next question we should ask ourselves is, How does the general form of the equa-
tion of a line generalize to �3? We might reasonably guess that if ax � by � c is the
general form of the equation of a line in �2, then ax � by � cz � d might represent a
line in �3. In normal form, this equation would be n � x � n � p, where n is a normal
vector to the line and p corresponds to a point on the line.

To see if this is a reasonable hypothesis, let’s think about the special case of the

equation ax � by � cz � 0. In normal form, it becomes n � x � 0, where 

However, the set of all vectors x that satisfy this equation is the set of all vectors or-
thogonal to n. As shown in Figure 1.59, vectors in infinitely many directions have this
property, determining a family of parallel planes. So our guess was incorrect: It
appears that ax � by � cz � d is the equation of a plane—not a line—in �3.

Let’s make this finding more precise. Every plane � in �3 can be determined by
specifying a point p on � and a nonzero vector n normal to � (Figure 1.60). Thus, if
x represents an arbitrary point on �, we have n � (x � p) � 0 or n � x � n � p. If

and then, in terms of components, the equation becomes

ax � by � cz � d (where d � n � p).

Definition The normal form of the equation of a plane � in �3 is

n � (x � p) � 0 or n � x � n � p

where p is a specific point on � and n 
 0 is a normal vector for �.

The general form of the equation of � is ax � by � cz � d, where is
a normal vector for �.

n � £ ab
c

§

x � £ xy
z

§ ,n � £ ab
c

§

n � £ ab
c

§ .

� £�1

5

0

§ � t £ 3

�4

1

§
d � PQ

!
� £ 3

�4

1

§
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Note that any scalar multiple of a normal vector for a plane is another normal
vector.

Find the normal and general forms of the equation of the plane that contains the

point P � (6, 0, 1) and has normal vector 

Solution With and we have so

the normal equation n � x � n � p becomes the general equation x � 2y � 3z � 9.

Geometrically, it is clear that parallel planes have the same normal vector(s).
Thus, their general equations have left-hand sides that are multiples of each other. So,
for example, 2x � 4y � 6z � 10 is the general equation of a plane that is parallel to
the plane in Example 1.30, since we may rewrite the equation as x � 2y � 3z � 5—
from which we see that the two planes have the same normal vector n. (Note that the
planes do not coincide, since the right-hand sides of their equations are distinct.)

We may also express the equation of a plane in vector or parametric form. To do
so, we observe that a plane can also be determined by specifying one of its points P
(by the vector p) and two direction vectors u and v parallel to the plane (but not par-
allel to each other). As Figure 1.61 shows, given any point X in the plane (located

3 # 1 � 9,2 # 0 �1 # 6 �n # p �x � £ xy
z

§ ,p � £ 60
1

§
n � £ 12

3

§ .
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Example 1. 30

su

x � p � su � tvtv

v
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x
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O

Figure 1. 61
x � p � su � t v

by x), we can always find appropriate multiples su and tv of the direction vectors such
that x � p � su � tv or x � p � su � tv. If we write this equation componentwise,
we obtain parametric equations for the plane.

Definition The vector form of the equation of a plane � in �3 is
x � p � su � t v

where p is a point on � and u and v are direction vectors for � (u and v are non-
zero and parallel to �, but not parallel to each other).

The equations corresponding to the components of the vector form of the
equation are called parametric equations of �.
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40 Chapter 1 Vectors

Find vector and parametric equations for the plane in Example 1.30.

Solution We need to find two direction vectors. We have one point P � (6, 0, 1) in
the plane; if we can find two other points Q and R in �, then the vectors and 
can serve as direction vectors (unless by bad luck they happen to be parallel!). By trial
and error, we observe that Q � (9, 0, 0) and R � (3, 3, 0) both satisfy the general equa-
tion x � 2y � 3z � 9 and so lie in the plane. Then we compute

which, since they are not scalar multiples of each other, will serve as direction vectors.
Therefore, we have the vector equation of �,

and the corresponding parametric equations,

x � 6 � 3s � 3t

y � 3t

z � 1 � s � t

[What would have happened had we chosen R � (0, 0, 3)?]

Remarks
• A plane is a two-dimensional object, and its equation, in vector or parametric

form, requires two parameters.
• As Figure 1.59 shows, given a point P and a nonzero vector n in �3, there are

infinitely many lines through P with n as a normal vector. However, P and two non-
parallel normal vectors n1 and n2 do serve to locate a line � uniquely, since � must
then be the line through P that is perpendicular to the plane with equation x � p �
sn1 � tn2 (Figure 1.62). Thus, a line in �3 can also be specified by a pair of equations

a1x � b1y � c1z � d1

a2x � b2y � c2z � d2

one corresponding to each normal vector. But since these equations correspond to a
pair of nonparallel planes (why nonparallel?), this is just the description of a line as
the intersection of two nonparallel planes (Figure 1.63). Algebraically, the line con-
sists of all points (x, y, z) that simultaneously satisfy both equations. We will explore
this concept further in Chapter 2 when we discuss the solution of systems of linear
equations.

Tables 1.2 and 1.3 summarize the information presented so far about the equa-
tions of lines and planes.

Observe once again that a single (general) equation describes a line in �2 but a
plane in �3. [In higher dimensions, an object (line, plane, etc.) determined by a single
equation of this type is usually called a hyperplane.] The relationship among the

£ xy
z

§ � £ 60
1

§ � s £ 3

0

�1

§ � t £�3

3

�1

§

u � PQ
!
� q � p � £ 3

0

�1

§  and v � PR
!
� r � p � £�3

3

�1

§

PR
!

PQ
!
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Two normals determine a line
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Section 1.3 Lines and Planes 41

dimension of the object, the number of equations required, and the dimension of the
space is given by the “balancing formula”:

(dimension of the object) � (number of general equations) � dimension of the space

The higher the dimension of the object, the fewer equations it needs. For exam-
ple, a plane in �3 is two-dimensional, requires one general equation, and lives in
a three-dimensional space: 2 � 1 � 3. A line in �3 is one-dimensional and so needs
3 � 1 � 2 equations. Note that the dimension of the object also agrees with the num-
ber of parameters in its vector or parametric form. Notions of “dimension” will be
clarified in Chapters 3 and 6, but for the time being, these intuitive observations will
serve us well.

We can now find the distance from a point to a line or a plane by combining the
results of Section 1.2 with the results from this section.

Find the distance from the point B � (1, 0, 2) to the line � through the point

A � (3, 1, 1) with direction vector 

Solution As we have already determined, we need to calculate the length of
where P is the point on � at the foot of the perpendicular from B. If we label v �
then projd(v) and (see Figure 1.64). We do the necessary
calculations in several steps.

Step 1: v � AB
!
� b � a � £ 10

2

§ � £ 31
1

§ � £�2

�1

1

§
PB

!
� v � projd1v 2AP

!
�

AB
!
,

PB
!
,

d � £�1

1

0

§ .

Table 1. 2 Equations of Lines in �2

Normal Form General Form Vector Form Parametric Form

n � x � n � p ax � by � c x � p � td x � p1 � td1

y � p2 � td2

Table 1. 3 Lines and Planes in �3

Normal Form General Form Vector Form Parametric Form

Lines a1x � b1y � c1z � d1 x � p � td
a2x � b2y � c2z � d2

Planes ax � by � cz � d x � p � su � tv

z � p3 � su3 � tv3

y � p2 � su2 � tv2

x � p1 � su1 � tv1n # x � n # p
z � p3 � td3

y � p2 � td2n2
# x � n2

# p2

x � p1 � td1n1
# x � n1

# p1� �
�

Example 1. 32
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42 Chapter 1 Vectors

Step 2: The projection of v onto d is

Step 3: The vector we want is

Step 4: The distance d(B, �) from B to � is

Using Theorem 1.3(b) to simplify the calculation, we have

Note
• In terms of our earlier notation, d(B, �) � d(v, projd(v)).

� 1
2122

� 1
219 � 9 � 4

7 v � projd1v 2 7 � 1
2 ß £�3

�3

2

§ ß
7 v � projd1v 2 7 � ß £�3

2

�3
2

1

§ ß

v � projd1v 2 � £�2

�1

1

§ � £�1
2
1
2

0

§ � £�3
2

�3
2

1

§
� £�1

2
1
2

0

§
� 1

2 £�1

1

0

§
� a 1�1 2 # 1�2 2 � 1 # 1�1 2 � 0 # 11�1 2 2 � 1 � 0

b £�1

1

0

§
 projd1v 2 � a d # v

d # d
bd

�

A

P

B

v

d

v � projd(v)

projd(v)

Figure 1. 64
d1B, � 2 � 7 v � projd1v 2 7
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Section 1.3 Lines and Planes 43

In the case where the line � is in �2 and its equation has the general form
ax � by � c, the distance d(B, �) from B � (x0, y0) is given by the formula

(3)

You are invited to prove this formula in Exercise 39.

Find the distance from the point B � (1, 0, 2) to the plane � whose general equation
is x � y � z � 1.

Solution In this case, we need to calculate the length of where P is the point on
� at the foot of the perpendicular from B. As Figure 1.65 shows, if A is any point on

� and we situate the normal vector of � so that its tail is at A, then we

need to find the length of the projection of onto n. Again we do the necessary
calculations in steps.

AB
!

n � £ 1

1

�1

§
PB

!
,

d1B, / 2 �
�ax0 � by0 � c �

2a2 � b2

Example 1. 33

�

n

A

B

projn(AB)

P

Figure 1. 65

d1B, � 2 � 7projn1AB
!2 7

Step 1: By trial and error, we find any point whose coordinates satisfy the equation
x � y � z � 1. A � (1, 0, 0) will do.

Step 2: Set

Step 3: The projection of v onto n is

� �2
3 £ 1

1

�1

§ � £�2
3

�2
3
2
3

§
� a 1 # 0 � 1 # 0 � 1 # 2

1 � 1 � 1�1 2 2 b £ 1

1

�1

§
 projn1v 2 � a n # v

n # n
bn

v � AB
!
� b � a � £ 10

2

§ � £ 10
0

§ � £ 00
2

§

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



44 Chapter 1 Vectors

Step 4: The distance d(B, �) from B to � is

In general, the distance d(B, �) from the point B � (x0, y0, z0) to the plane whose
general equation is ax � by � cz � d is given by the formula

(4)

You will be asked to derive this formula in Exercise 40.

d1B, � 2 �
�ax0 � by0 � cz0 � d �

2a2 � b2 � c 2

� 2
313

� 2
3 ß £ 1

1

�1

§ ß
7projn1v 2 7 � ��2

3 � ß £ 1

1

�1

§ ß

Exercises 1. 3

In Exercises 1 and 2, write the equation of the line passing
through P with normal vector n in (a) normal form and
(b) general form.

1. 2.

In Exercises 3–6, write the equation of the line passing
through P with direction vector d in (a) vector form and
(b) parametric form.

3. 4.

5. 6.

In Exercises 7 and 8, write the equation of the plane passing
through P with normal vector n in (a) normal form and
(b) general form.

7. 8. P � 1�3, 1, 2 2 , n � £ 10
5

§P � 10, 1, 0 2 , n � £32
1

§

P � 1�3, 1, 2 2 , d � £ 10
5

§P � 10, 0, 0 2 , d � £ 1

�1

4

§
P � 13, �3 2 , d � c�1

1
dP � 11, 0 2 , d � c�1

3
d

P � 12, 1 2 , n � c 3

�4
dP � 10, 0 2 , n � c3

2
d

In Exercises 9 and 10, write the equation of the plane passing
through P with direction vectors u and v in (a) vector form
and (b) parametric form.

9.

10.

In Exercises 11 and 12, give the vector equation of the line
passing through P and Q.

11. P � (1, �2), Q � (3, 0)

12. P � (4, �1, 3), Q � (2, 1, 3)

In Exercises 13 and 14, give the vector equation of the plane
passing through P, Q, and R.

13. P � (1, 1, 1), Q � (4, 0, 2), R � (0, 1, �1)

14. P � (1, 0, 0), Q � (0, 1, 0), R � (0, 0, 1)

15. Find parametric equations and an equation in vector
form for the lines in �2 with the following equations:

(a) y � 3x � 1 (b) 3x � 2y � 5

P � 14, �1, 3 2 , u � £ 11
0

§ , v � £�1

1

1

§
P � 10, 0, 0 2 , u � £21

2

§ , v � £�3

2

1

§
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Section 1.3 Lines and Planes 45

16. Consider the vector equation x � p � t(q � p), where
p and q correspond to distinct points P and Q in �2

or �3.

(a) Show that this equation describes the line segment
as t varies from 0 to 1.

(b) For which value of t is x the midpoint of
and what is x in this case?

(c) Find the midpoint of when P � (2, �3) and
Q � (0, 1).

(d) Find the midpoint of when P � (1, 0, 1) 
and Q � (4, 1, �2).

(e) Find the two points that divide in part (c) into
three equal parts.

(f) Find the two points that divide in part (d) into
three equal parts.

17. Suggest a “vector proof” of the fact that, in  �2, two
lines with slopes m1 and m2 are perpendicular if and
only if m1m2 � �1.

18. The line � passes through the point P � (1, �1, 1) and

has direction vector d For each of the

following planes �, determine whether � and � are
parallel, perpendicular, or neither:

(a) 2x � 3y � z � 1 (b) 4x � y � 5z � 0
(c) x � y � z � 3 (d) 4x � 6y � 2z � 0

19. The plane �1 has the equation 4x � y � 5z � 2. For
each of the planes � in Exercise 18, determine whether
�1 and � are parallel, perpendicular, or neither.

20. Find the vector form of the equation of the line in �2

that passes through P � (2, �1) and is perpendicular
to the line with general equation 2x � 3y � 1.

21. Find the vector form of the equation of the line in �2

that passes through P � (2, �1) and is parallel to the
line with general equation 2x � 3y � 1.

22. Find the vector form of the equation of the line in �3

that passes through P � (�1, 0, 3) and is perpendicular
to the plane with general equation x � 3y � 2z � 5.

23. Find the vector form of the equation of the line in �3

that passes through P � (�1, 0, 3) and is parallel to
the line with parametric equations

24. Find the normal form of the equation of the plane that
passes through P � (0, �2, 5) and is parallel to the
plane with general equation 6x � y � 2z � 3.

z � �2 � t
y �  2 � 3t
x �  1 � t

� £ 2

3

�1

§ .

PQ

PQ

PQ

PQ

PQ,
PQ

25. A cube has vertices at the eight points (x, y, z), where
each of x, y, and z is either 0 or 1. (See Figure 1.34.)

(a) Find the general equations of the planes that
determine the six faces (sides) of the cube.

(b) Find the general equation of the plane that con-
tains the diagonal from the origin to (1, 1, 1) and
is perpendicular to the xy-plane.

(c) Find the general equation of the plane that
contains the side diagonals referred to in
Example 1.22.

26. Find the equation of the set of all points that are
equidistant from the points P � (1, 0, �2) and
Q � (5, 2, 4).

In Exercises 27 and 28, find the distance from the point Q to
the line �.

27. Q � (2, 2), � with equation 

28. Q � (0, 1, 0), � with equation 

In Exercises 29 and 30, find the distance from the point Q to
the plane �.

29. Q � (2, 2, 2), � with equation x � y � z � 0

30. Q � (0, 0, 0), � with equation x � 2y � 2z � 1

Figure 1.66 suggests a way to use vectors to locate the point 
R on � that is closest to Q.

31. Find the point R on � that is closest to Q in Exercise 27.

32. Find the point R on � that is closest to Q in Exercise 28.

£xy
z

§ � £11
1

§ � t £�2

0

3

§
cx
y
d � c�1

2
d � t c 1

�1
d

�

P

O

Q

R

p

r

Figure 1. 66
r � p � PR

!
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46 Chapter 1 Vectors

Figure 1.67 suggests a way to use vectors to locate the point R
on � that is closest to Q.

In Exercises 43–44, find the acute angle between the planes
with the given equations.

43. x � y � z � 0 and 2x � y � 2z � 0

44. 3x � y � 2z � 5 and x � 4y � z � 2

In Exercises 45–46, show that the plane and line with the
given equations intersect, and then find the acute angle of
intersection between them.

45. The plane given by x � y � 2z � 0 and the line 
given by

46. The plane given by 4x � y � z � 6 and the line 

given by 

Exercises 47–48 explore one approach to the problem of find-
ing the projection of a vector onto a plane. As Figure 1.69
shows, if � is a plane through the origin in �3 with normal
vector n, and v is a vector in �3, then p � proj�(v) is a
vector in � such that v � cn � p for some scalar c.

x � t

y � 1 � 2t

z � 2 � 3t

x � 2 � t

y � 1 � 2t

z � 3 � t

r

p

Q

O

P

R

�

Figure 1. 67

r � p � PQ
!
� QR

! 180 �

n1 n2

�1

�2

�

Figure 1. 68

� p � v � cn

n
v

cn

Figure 1. 69
Projection onto a plane

33. Find the point R on � that is closest to Q in Exercise 29.

34. Find the point R on � that is closest to Q in Exercise 30.

In Exercises 35 and 36, find the distance between the parallel
lines.

35.

36.

In Exercises 37 and 38, find the distance between the parallel
planes.

37. 2x � y � 2z � 0 and 2x � y � 2z � 5

38. x � y � z � 1 and x � y � z � 3

39. Prove equation (3) on page 43.

40. Prove equation (4) on page 44.

41. Prove that, in �2, the distance between parallel lines
with equations c1 and c2 is given by

42. Prove that the distance between parallel planes with
equations d1 and d2 is given by

If two nonparallel planes �1 and �2 have normal vectors n1

and n2 and � is the angle between n1 and n2, then we define

0d1 � d2 07n 7 .

n # x �n # x �

0c1 � c2 07n 7 .

n # x �n # x �

£xy
z

§ � £ 1

0

�1

§ � s £11
1

§  and £xy
z

§ � £01
1

§ � t £11
1

§
cx
y
d � c1

1
d � s c�2

3
d  and cx

y
d � c5

4
d � t c�2

3
d

the angle between �1 and �2 to be either � or 180� � �,
whichever is an acute angle. (Figure 1.68)
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Section 1.3 Lines and Planes 47

47. Using the fact that n is orthogonal to every vector in �
(and hence to p), solve for c and thereby find an expres-
sion for p in terms of v and n.

48. Use the method of Exercise 43 to find the projection of

v � £  1

 0

�2

§

onto the planes with the following equations:

(a) x � y � z � 0 (b) 3x � y � z � 0

(c) x � 2z � 0 (d) 2x � 3y � z � 0
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