Transformations of the Sine Function (Vertical Stretch/Shrink)

- **Directions**: Open the "Transformations of Sine" GeoGebra activity and use it complete the the following questions.
- Intro: Remember the definition of sine, $sin\theta = \frac{y}{r}$, where r is the radius of the circle, and y is the y coordinate of the point on the circle AND the terminal side of θ .(The blue point). Solving for y, we have $y = rsin\theta$, which represents the y coordinate of the blue point. For a given r, we can now graph the relationship by plotting points (θ, y) . On the horizontal axis is the measure of θ , and the vertical axis is y (vertical position of blue point). The collection of all ordered pairs together forms the graph of the function $y = rsin\theta$.

Directions: Make sure the checkbox for $y = rsin(b(\theta - c))$ is checked. Set b = 1, c = 0

(b and c have no effect for these values. We will explore these later). Uncheck plot.

Set r = 1. So our function is y = sinθ. Use the pink slider to adjust θ to each of the values in the table below. Record in the table the y coordinate of the blue point for each θ. Then plot the ordered pairs from the table on the axes below.

- 2. Now check **plot** to and slide θ to 3π to graph $y = sin\theta$ for $-\pi \le \theta \le 3\pi$. Sketch the wave on the axes above. What are the max and min y values of the function?
- 3. Now adjust to r = 2. Sketch the function on the axes above. Then do the same for r = .5. What is the relationship between the minimum and maximum values of the function and r?

Transformations of Sine (Clockwise Rotation)

Directions: Make sure the checkbox for $y = rsin(b(\theta - c))$ is unchecked. Then check the box for the red equation $y = -rsin(b(\theta - c))$. Again set $\mathbf{b} = 1$, $\mathbf{c} = 0$. Uncheck plot.

Note: In the circle, the red angle is $-\theta$, which is a clockwise rotation of the same amount as the counter clockwise rotation by the pink angle θ .

1. Set $\mathbf{r} = 1$. Rotate θ to $\frac{\pi}{4}$. Draw the circle with $-\theta$, θ , and $sin(-\theta)$ as it appears on the screen

2. Notice the y coordinate of the red point is $y = sin(-\theta)$. Since sine is an odd function, we can also write

$$y = sin(-\theta) = _$$

3. Now we can plot ordered pairs (θ, y) for $y = -sin(\theta)$. Use the pink slider to adjust θ to each of the values in the table below. Record in the table the y coordinate of the blue point for each θ . Then plot the ordered pairs from the table on the axes below

4. Now check **plot** and slide θ to 3π to graph $y = -sin\theta$ for $-\pi \le \theta \le 3\pi$. Plot the full wave on the axes above. Now adjust to the following values and plot the waves you see for each value: $\mathbf{r} = \mathbf{1}$, $\mathbf{r} = \mathbf{2}$, $\mathbf{r} = .5$. How do these functions compare with the sketches from page 1? What transformation is applied?

Transformations of Sine: (Frequency Change)

Directions: Now uncheck $y = -rsin(b(\theta - c))$ and again check the blue equation $y = rsin(b(\theta - c))$. Set c = 0 and r = 1.

So far we have explored with $\mathbf{b} = \mathbf{1}$. In all sketches so far, notice that a full cycle, (**highlighted in yellow**) has a horizontal width of 2π . The horizontal width of the of one cycle is called the **period** of the function. Observing the circle, the **period** is also the value of θ for which the blue point completes a full rotation around the circle.

1. Set b = 2. Slide θ to different values. Notice the blue angle 2θ has a measure that is twice the pink angle. Set $\theta = \frac{\pi}{3}$. Sketch the circle below showing θ , 2θ , $sin(2\theta)$

2. Notice the y coordinate of the blue point is now is $y = sin(2\theta)$. Use the pink slider to adjust θ to each of the values in the table below. Record in the table y coordinate of the blue point for each θ . Then plot the ordered pairs from the table on the axes below

- 3. Now check **plot** to and slide θ to 3π to graph $y = sin 2\theta$ for $-\pi \le \theta \le 3\pi$. Sketch the wave on the axes above.
- 4. Starting at $\theta = 0$, to what value do you slide θ so that the blue point makes one rotation around the circle?
- 5. Remember to period is the horizontal width of a full cycle. What is the period of $y = sin(2\theta)$? Set b = 3 and answer 3 and 4 again. Then b = .75. What is the relationship between b and the period?

Transformations of Sine: (Phase Shift)

Directions: Make sure the checkbox for $y = rsin(b(\theta - c))$ is checked. Set b = 1 and r=1 Uncheck Plot.

Note: So far we have explored with $\mathbf{c} = \mathbf{0}$. Slide $\boldsymbol{\theta}$ to 0 and now set $\mathbf{c} = \frac{\pi}{6}$. Now our equation is $\mathbf{y} = \sin\left(\mathbf{\theta} - \frac{\pi}{6}\right)$. Adjust $\boldsymbol{\theta}$ and notice that in the circle, the green angle is always $\frac{\pi}{6}$ radians behind $\boldsymbol{\theta}$. So the green angle has measure $\boldsymbol{\theta} - \frac{\pi}{6}$.

- 1. Set $\theta = \frac{\pi}{3}$ and sketch the circle below showing $\theta, \theta \frac{\pi}{6}$, and $\sin\left(\theta \frac{\pi}{6}\right)$.
- 2. Notice the y coordinate of the blue point is now is $y = sin(\theta \frac{\pi}{6})$. Use the pink slider to adjust θ to each of the values in the table below. Record in the table y coordinate of the blue point for each θ . Then plot the ordered pairs from the table on the axes below

	$y = sin\left(\theta - \frac{\pi}{6}\right)$	θ
		0
У		$\frac{\pi}{6}$
		$\frac{2\pi}{3}$
θ		$\frac{7\pi}{6}$
		$\frac{5\pi}{3}$
		$\frac{13\pi}{6}$

- 3. Now check **plot** to and slide θ to 3π to graph $y = sin\left(\theta \frac{\pi}{6}\right)$ for $-\pi \le \theta \le 3\pi$. Sketch the wave on the axes above.
- 4. Notice the full cycle highlighted in yellow. Slide c back and forth between 0 and $\frac{\pi}{6}$. What transformation is applied to the highlighted cycle?
- 5. Now slide c to $-\frac{\pi}{6}$. What is the relationship between the pink and green angle? What transformation is applied to the highlighted cycle now?
- 6. What is the relationship between c and the graph of $y = sin\left(\theta \frac{\pi}{6}\right)$.