1. Quadrature Problem:

Given a region in the plane, find a root so that the square of this root has the same area.

- a. Quadrature of a Triangle: Given $\triangle ABC$, find a square \Box DEFG with root = DE and area of \Box DEFG = area of $\triangle ABC$
 - i. Construct a rectangle equal in area to that of $\triangle ABC$

ii. Construct a square equal in area to the rectangle.

b. Quadrature for Polygons:

Problem: Find the root of a square that has the same area as a given polygon. Suggest the outline for a procedure to accomplish the solution of the problem.. Hint: Use triangles and the Pythagorean Theorem.

- 2. Example for completing the square problem:
- [al'Khowarizmi ${\approx}820$ AD and al'Khayyam ${\approx}1100$ AD.]

Find the root of the square which when added to a rectangle with one side of the same length as the root gives a rectangle of area c.

How Many Ways Can You Solve a Quadratic Equation Visually? Worksheet

Martin Flashman ©2023

- 3. Descartes Arithmetic for Segments:
 - a. Multiplication using a unit segment and proportional sides of similar triangles. Label the vertical and horizonal segments in the following figure with lengths 1, x, y and xy to illustrate how to construct using similar triangles a segment with length equal to the product of lengths x and y. Discuss how to execute the construction step by step.

b. Square roots using a unit segment and right triangles in a semicircle. Label the vertical and horizonal segments in the following figure with lengths $1, x, \sqrt{x}$ to illustrate how to use a semicircle to construct a segment with that corresponds to the square root of x. Discuss how to execute the construction step by step.

4. Descartes solves a quadratic equation for the arithmetic of segments.

$$z^2 = az - b^2$$
; $b < 1/2 a$

Solution:

NL = 1/2 a, LM = b, NL LM, MQR || LN.

Construct the circle with center N, through L, meeting MQR at Q and R.

Show that MQ and MR are solutions for z in the equation.

[Hint: Consider altitude for \triangle QRN and the Pythagorean Theorem]

- 5. Suppose $f(x) = x^2 4x + 2$
 - a. Draw a sketch of the graph g(x) = f(x) 2 by finding the roots of g.

b. Find the axis of symmetry for g and f.

c. Express *f* in the vertex form ("completing the square").

d. Solve the equation: $f(x) = x^2 - 4x + 2 = 0$.

How Many Ways Can You Solve a Quadratic Equation Visually? Worksheet

Martin Flashman ©2023

7.

a. Complete the following tables for m(x) = 2x and s(x) = x + 1

nowing tables for $m(x)$		$2\lambda \operatorname{and} S(\lambda) = \lambda + 1$		
x	m(x)=2x	s(x) = x + 1		
2				
1				
0				
-1				
-2				

b. Using the data from part a), on separate diagrams sketch mapping diagrams for m(x) = 2xand s(x) = x+1

<i>x</i> + 1	
	4.0-
4.0-	3.0-
3.0-	2.0-
2.0-	- 0.1
1.0-	0.0
0.0-	
- 1.0-	-1.0-
-2.0-	-2.0-
-3.0-	- 3.0-
	- 4 . 0
-4-0-	

How Many Ways Can You Solve a Quadratic Equation Visually? Worksheet

8. Let $q(x) = x^2$.

Martin Flashman ©2023

a. Complete the following table for $q(x) = x^2$.

1(.)	
x	$q(x) = x^2$
2	
1	
0	
-1	
-2	

b. Using the data from part a, sketch a mapping diagram for $q(x) = x^2$.

- 9. Solving $2(x-3)^2 + 1 = 9$ with a mapping diagram.
 - a. Express $f(x) = 2(x-3)^2 + 1$ as composition of core linear and quadratic functions. $f(x) = h\left(m\left(q(z(x))\right)\right)$ where

$$h(x) = m(x) = q(x) = z(x) =$$

b. Sketch a mapping diagram for f as a composition with x = 1,2,3,4,5.

9- 9		
8-		
7-		
6-		
5-		
4 -		
3-		
2-		
1-		
0-		
-1-		
-2-		

c. On the mapping diagram below indicate by circling numbers and arrows how the diagram visualizes the solution of $2(x-3)^2 + 1 = 9$. Check the solutions. Discuss how to execute the solution step by step.

Check: