1. Quadrature Problem:

Given a region in the plane, find a root so that the square of this root has the same area.

a. Quadrature of a Triangle: Given $\triangle \mathrm{ABC}$, find a square $\square \mathrm{DEFG}$ with root $=\mathrm{DE}$ and area of $\square \mathrm{DEFG}=$ area of $\triangle \mathrm{ABC}$
i. Construct a rectangle equal in area to that of $\triangle \mathrm{ABC}$

ii. Construct a square equal in area to the rectangle.

b. Quadrature for Polygons:

Problem: Find the root of a square that has the same area as a given polygon.
Suggest the outline for a procedure to accomplish the solution of the problem..
Hint: Use triangles and the Pythagorean Theorem.
2. Example for completing the square problem: [al'Khowarizmi $\approx 820 \mathrm{AD}$ and al'Khayyam $\approx 1100 \mathrm{AD}$.]
Find the root of the square which when added to a rectangle with one side of the same length as the root gives a rectangle of area c.

3. Descartes Arithmetic for Segments:
a. Multiplication using a unit segment and proportional sides of similar triangles.

Label the vertical and horizonal segments in the following figure with lengths $1, x, y$ and $x y$ to illustrate how to construct using similar triangles a segment with length equal to the product of lengths x and y. Discuss how to execute the construction step by step.

b. Square roots using a unit segment and right triangles in a semicircle.

Label the vertical and horizonal segments in the following figure with lengths $1, x, \sqrt{x}$ to illustrate how to use a semicircle to construct a segment with that corresponds to the square root of x. Discuss how to execute the construction step by step.

Worksheet

4. Descartes solves a quadratic equation for the arithmetic of segments.

$$
z^{2}=a z-b^{2} ; b<1 / 2 a
$$

Solution:
$\mathrm{NL}=1 / 2 a, \mathrm{LM}=b, \mathrm{NL} \perp \mathrm{LM}, \mathrm{MQR}| | \mathrm{LN}$.
Construct the circle with center N , through L , meeting MQR at Q and R .
Show that MQ and MR are solutions for z in the equation.
[Hint: Consider altitude for $\triangle \mathrm{QRN}$ and the Pythagorean Theorem]

5. Suppose $f(x)=x^{2}-4 x+2$
a. Draw a sketch of the graph $g(x)=f(x)-2$ by finding the roots of g.
b. Find the axis of symmetry for g and f.
c. Express f in the vertex form ("completing the square").
d. Solve the equation: $f(x)=x^{2}-4 x+2=0$.
7.
a. Complete the following tables for $m(x)=2 x$ and $s(x)=x+1$

x	$m(x)=2 x$	$s(x)=x+1$
2		
1		
0		
-1		
-2		

b. Using the data from part a), on separate diagrams sketch mapping diagrams for $m(x)=2 x$ and $s(x)=x+1$

8. Let $\mathrm{q}(x)=x^{2}$.
a. Complete the following table for $q(x)=x^{2}$.

x	$q(x)=x^{2}$
2	
1	
0	
-1	
-2	

b. Using the data from part a, sketch a mapping diagram for $q(x)=x^{2}$.

9. Solving $2(x-3)^{2}+1=9$ with a mapping diagram.
a. Express $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2}(\boldsymbol{x}-\mathbf{3})^{2}+\mathbf{1}$ as composition of core linear and quadratic functions.

$$
f(x)=h(m(q(z(x)))) \text { where }
$$

$$
h(x)=
$$

$$
m(x)=
$$

$$
q(x)=
$$

$$
\mathrm{z}(\mathrm{x})=
$$

b. \quad Sketch a mapping diagram for f as a composition with $x=1,2,3,4,5$.

c. On the mapping diagram below indicate by circling numbers and arrows how the diagram visualizes the solution of $2(x-3)^{2}+1=9$. Check the solutions. Discuss how to execute the solution step by step.

Check:

