1. PERÍMETRO DO RETÂNGULO

Objetivo: Oportunizar aos estudantes que identifiquem e classifiquem formas planas, mais especificamente o quadrado e o retângulo, e reconheçam a relação entre as medidas dos lados e o perímetro dessas figuras.

Habilidade da BNCC associada:

"(EF06MA29)³ Analisar e descrever mudanças que ocorrem no perímetro e na área de um quadrado ao se ampliarem ou reduzirem, igualmente, as medidas de seus lados, para compreender que o perímetro é proporcional à medida do lado, o que não ocorre com a área" (BRASIL, 2018, p. 103).

Para a leitura do código, é relevante mencionar que, conforme a BNCC: o primeiro par de letras indica a etapa escolar; o primeiro par de números representa o respectivo ano escolar; a segunda sequência de letras corresponde ao componente curricular ou área do conhecimento; o primeiro número após a segunda sequência de letras indica a competência específica que abrange a habilidade; os números restantes consistem na numeração da habilidade no seu respectivo conjunto determinado por cada competência (BRASIL, 2018). Neste caso, a habilidade EF06MA29 é voltada para o Ensino Fundamental (EF), em particular para o sexto ano (06), e se refere ao componente curricular Matemática (MA), à segunda competência específica (2), e é a habilidade número nove (9) dentre as elencadas nessa competência.

- 1. Clique com o botão direito do mouse sobre a Janela de Visualização e desmarque a opção Eixos para ocultá-los.
- 2. Selecione a ferramenta *Reta* e clique em dois pontos, posicionando-os horizontalmente sobre os pontos da malha, criando os pontos A e B.
- Selecione a ferramenta *Ponto* e clique em qualquer lugar na Janela de Visualização, preferencialmente coincidindo com alguma linha horizontal da malha, criando o ponto C.
- 4. Selecione *Reta Paralela* e clique na reta e depois no ponto criado anteriormente.
- 5. Selecione *Reta Perpendicular*, clique sobre a reta definida pelos pontos A e B e sobre o ponto A. Faça o mesmo, agora clicando sobre o ponto B.
- 6. Selecione a ferramenta *Interseção de Dois Objetos* e clique na reta perpendicular que passa por A e na reta paralela em que se encontra o ponto C. Marque também a interseção da reta perpendicular que passa por B com a reta que passa por C.
- 7. Selecione a ferramenta *Polígono* e clique nos pontos A, B, E, D e, por fim, em A, vértice inicial do polígono.
- 8. Selecione a ferramenta *Distância, Comprimento ou Perímetro* e meça os lados AB, BE, ED e DA clicando nos respectivos segmentos de reta, a, b, e e d, lados do retângulo.
- 9. Na Janela de Álgebra, clique com o botão direito do mouse sobre Reta e desmarque a opção Exibir Objeto.
- 10. Ainda nessa janela, desmarque o ponto C para ocultá-lo.
- 11. Clique em Exibir, na Barra de Ferramentas, e selecione Planilha.
- 12. Nas células A1, B1, C1 e D1 digite, respectivamente, "Lado a", "Lado b", "Lado e", "Lado d".
- 13. Em El, digite "Perímetro".

1. Perímetro do retângulo

- 14. Na linha 2, digite apenas o nome dos respectivos lados: em A2, digite "a"; em B2, "b"; em C2, "e" e em D2, digite "d". Serão exibidas, em cada célula, as medidas dos lados.
- 15. Em E2, digite "Soma[A2:D2]"(ou clique no canto superior esquerdo no somatório e selecione as células de A1 até D1), e então a planilha fará o cálculo do perímetro do retângulo.
- 16. Selecione *Mover*, movimente os vértices A e B do retângulo e observe as variações nas medidas da planilha.

A construção também está disponibilizada neste vídeo: <u>https://youtu.be/eXeK1UHVTiQ</u>

- O que acontece com a medida do perímetro, quando movimentamos o segmento AB para mais perto de DE? E o que acontece com as medidas de AD e BE?
- 2) Movimentando os pontos e segmentos, existe a possibilidade de deixarmos todas as medidas de AB, BE, ED e AD iguais? Tente com a malha oculta ou usando o ponto C, que deve ser exibido. Como essa nova figura se chama? Quais são as principais características dela?
- 3) A partir desses movimentos, podemos afirmar que todo quadrado é um retângulo? Justifique tomando como base sua visualização. É possível afirmar que todo retângulo é quadrado? Justifique.

2. SEMELHANÇA DE TRIÂNGULOS

Objetivo: Oportunizar aos estudantes que explorem e compreendam os casos de semelhança de triângulos.

Habilidades da BNCC associadas:

"(EF06MA21) Construir figuras planas semelhantes em situações de ampliação e de redução, com o uso de malhas quadriculadas, plano cartesiano ou tecnologias digitais. (BRASIL, 2018, p. 303).

"(EF09MA12) Reconhecer as condições necessárias e suficientes para que dois triângulos sejam semelhantes" (BRASIL, 2018, p. 317).

Roteiro de Construção

Caso 1: A.A.

- 4. Na Janela de Visualização, clique com o botão direito do mouse e desmarque as opções Eixos e Malha.
- Com a ferramenta *Texto*, clique preferencialmente na parte inferior ou superior da Janela de Visualização, e digite: "Caso A. A.".
- 6. Com a ferramenta *Polígono*, faça um triângulo clicando sobre três pontos na Janela de Visualização e, por último, no ponto inicial, criando os pontos A, B e C.

2. Semelhança de triângulos

- 7. Com a ferramenta *Ponto*, crie um ponto D fora do polígono.
- 8. Em seguida, utilizando a ferramenta *Homotetia*, clique sobre o triângulo, sobre o ponto D, centro da homotetia, e digite "2" para razão.
- 9. Selecione Ângulo e clique sobre dois segmentos, lados do triângulo, no sentido anti-horário para exibir o ângulo entre eles. Faça o mesmo nos segmentos correspondentes na figura ampliada. Analogamente, insira outro ângulo na figura original e na ampliada.

Caso 2: L.A.L.

- Se for necessário, desloque a Janela de Visualização usando *Mover* para outra construção e insira o Texto "Caso L.A.L."
- 11. Crie outro triângulo qualquer com a ferramenta *Polígono*.
- 12. Insira um *Ponto* fora do triângulo.
- 13. Mais uma vez, usando *Homotetia*, clique no triângulo, no ponto fora dele e digite "2" para o fator de ampliação.
- 14. Depois, no triângulo original, marque as medidas de dois segmentos usando *Distância Comprimento ou Perímetro* e do ângulo entre eles, clicando no sentido anti-horário com a ferramenta *Ângulo*. Faça o mesmo para os lados e ângulos correspondentes do triângulo criado por homotetia.

Caso 3: L.L.L.

- 15. Se for necessário, desloque novamente a Janela de Visualização e insira o Texto "Caso LLL".
- 16. Crie um triângulo.
- 17. Crie um *Ponto* fora do polígono.

- 18. Com a ferramenta *Homotetia*, amplie o triângulo na razão 2.
- 19. Depois, no triângulo original, marque as medidas dos três segmentos, lados do polígono, usando *Distância Comprimento ou Perímetro*. Faça o mesmo para os lados correspondentes do triângulo criado por homotetia.

Observação: Use a ferramenta *Mover* para organizar os textos e movimentar os centros da homotetia e os vértices dos triângulos originais.

A construção também está disponibilizada neste vídeo:

https://youtu.be/YliDW86-UVk

- Manipulando as figuras, o que você observa em relação às medidas dos ângulos exibidas em cada caso de semelhança, comparando as figuras originais com as ampliadas?
- 2) Exiba os outros ângulos e a medida dos segmentos em cada caso. O que é possível afirmar?
- 3) Utilizando o GeoGebra, construa, em cada caso de semelhança, dois triângulos que satisfaçam as condições apresentadas em cada caso.

3. DIFERENTES TIPOS DE

TRIÂNGULO COM MESMA ÁREA

Objetivo: Possibilitar a investigação pelos alunos do cálculo de área de um triângulo qualquer a partir de diferentes tipos de triângulos com mesma área.

Habilidades da BNCC associadas:

"(EF07MA23) Verificar relações entre os ângulos formados por retas paralelas cortadas por uma transversal, com e sem uso de softwares de geometria dinâmica" (BRASIL, 2018, p. 309).

"(EF07MA31) Estabelecer expressões de cálculo de área de triângulos e de quadriláteros" (BRASIL, 2018, p. 309).

- Clique com o botão direito do mouse sobre a Janela de Visualização e desmarque as opções Eixos e Malha.
- 2. Construa uma *Reta* horizontal f, criando os pontos A e B.
- Construa, com a ferramenta Reta Paralela, uma reta g paralela a reta f, criando o ponto C.
- 4. Usando a ferramenta *Ponto*, crie os pontos D e E sobre a reta g.
- 5. Com a ferramenta *Polígono*, construa os triângulos ABD e ABE.

Possibilidades do GeoGebra nas aulas de Matemática da Educação Básica

- 6. Com a ferramenta *Área*, calcule a área do triângulo ABD e ABE clicando sobre eles.
- 7. Usando Ângulo, clique mais uma vez sobre cada um dos triângulos.

Observação: Use *Mover* para movimentar a reta paralela a g, os vértices dos triângulos e, se for necessário, a posição dos valores dos ângulos para facilitar a visualização.

A construção também está disponibilizada neste vídeo:

https://youtu.be/kUKjslDDTIk

- 1) Movimente os pontos D e E, e descreva o que acontece com as medidas das áreas desses triângulos. Por que isso acontece?
- 2) Que cálculo foi feito para obter esses resultados? Discuta com seus colegas e elaborem uma expressão que descreva esse cálculo.
- 3) Quanto vale a soma de todos os ângulos internos? Use o campo Entrada.
- 4) Com a ferramenta *Mover*, mova o ponto E. O que acontece com a soma dos ângulos internos do triângulo ABE?

4. CONDIÇÃO DE EXISTÊNCIA

DE TRIÂNGULOS

Objetivo: Oportunizar aos alunos que estabeleçam a compreensão sobre as relações entre os lados de um triângulo, as quais fornecem as condições de sua existência.

Habilidades da BNCC associadas:

"(EF07MA24) Construir triângulos, usando régua e compasso, reconhecer a condição de existência do triângulo quanto à medida dos lados e verificar que a soma das medidas dos ângulos internos de um triângulo é 180°" (BRASIL, 2018, p. 309).

"(EF06MA19) Identificar características dos triângulos e classificá-los em relação às medidas dos lados e dos ângulos" (BRA-SIL, 2018, p. 303).

"(EF07MA26) Descrever, por escrito e por meio de um fluxograma, um algoritmo para a construção de um triângulo qualquer, conhecidas as medidas dos três lados" (BRASIL, 2018, p. 309).

- 1. Esconda os Eixos e a Malha.
- 2. Crie um Controle Deslizante a, variando de 0 a 30, com incremento 1.

- 3. Crie outros controles deslizantes b e c, com as mesmas características de a.
- Selecione Mover e altere a cor de cada um dos controles clicando com o botão direito do mouse em Propriedades, Cor, ou pelo atalho na Janela de Visualização.
- 5. Em seguida, com a ferramenta *Círculo Dados Centro e Raio*, crie um círculo com centro A qualquer e raio a, clicando sobre a Janela de Visualização.
- 6. Crie um Ponto B na circunferência, clicando sobre ela.
- 7. Com a ferramenta Segmento, crie o segmento AB.
- 8. Altere a cor do segmento para que corresponda com a cor do controle a usando *Mover*.
- Esconda esse círculo desmarcando a cônica pela Janela de Álgebra.
- 10. Em seguida, crie um círculo com centro em B e raio c, usando Círculo Dados Centro e Raio.
- 11. Com a mesma ferramenta, crie um círculo com centro em A e raio b.
- 12. Usando *Ponto*, marque uma das interseções entre esses círculos.
 - **Observação:** Se não houver interseção entre as circunferências, altere os valores dos controles deslizantes usando *Mover* até que seja possível criar o ponto.
- 13. Usando *Segmento*, una esse ponto de interseção às extremidades A e B, criando mais dois segmentos.
- 14. No segmento que liga B ao ponto de interseção, coloque a cor do controle deslizante c. E no segmento que liga A ao ponto de interseção, coloque a cor do controle deslizante b.
- 15. Oculte o rótulo dos segmentos e dos pontos pela Janela de Álgebra, clicando com o botão direito do mouse sobre Ponto e Segmento, desmarcando Exibir Rótulo.
- 16. Esconda os círculos, desmarcando as cônicas exibidas.

4. Condição de existência de triângulos

A construção também está disponibilizada neste vídeo:

https://youtu.be/0-RSUl0M lw

Sugestão de questão a ser explorada a partir da atividade:

Manipule as medidas nos controles deslizantes e conjecture o que acontece. Escreva as relações que observa, se atentando aos valores das medidas dos lados que inviabilizam a existência do triângulo e aos valores que viabilizam essa existência. Argumente com os colegas sobre suas constatações.

E RETO-RETÂNGULO

5. PARALELEPÍPEDO OBLÍQUO

Atividade baseada no Caderno do Aluno do Estado de São Paulo (SÃO PAULO, 2014b).

Objetivo: Explorar com os alunos as diferenças entre dois tipos de paralelepípedo, podendo ser abordados os conceitos de área, volume e perímetro.

Habilidades da BNCC associadas:

"(EF02MA15) Reconhecer, comparar e nomear figuras planas (círculo, quadrado, retângulo e triângulo), por meio de características comuns, em desenhos apresentados em diferentes disposições ou em sólidos geométricos" (BRASIL, 2018, p. 283).

"(EF09MA19) Resolver e elaborar problemas que envolvam medidas de volumes de prismas e de cilindros retos, inclusive com uso de expressões de cálculo, em situações cotidianas" (BRASIL, 2018, p. 314).

"(EM13MAT309) Resolver e elaborar problemas que envolvem o cálculo de áreas totais e de volumes de prismas, pirâmides e corpos redondos em situações reais (como o cálculo do gasto de material para revestimento ou pinturas de objetos cujos formatos sejam composições dos sólidos estudados), com ou sem apoio de tecnologias digitais." (BRASIL, 2018, p. 537).

Roteiro de Construção

- 1. Com a ferramenta *Polígono*, crie um retângulo na Janela de Álgebra de lados de medidas 6 e 12. Como sugestão, clique sobre as coordenadas (0,0), (0,6), (12,6) (12,0) e sobre o ponto inicial, com o auxílio da Malha, criando os vértices A, B, C e D, respectivamente.
- 2. De forma análoga, crie outro retângulo EFGH com as mesmas medidas, preferencialmente clicando nas coordenadas (0,-6), (0,-12), (12,-12) e (12,-6), vértices E, F, G e H, respectivamente.
- 3. Clique em Exibir, Janela de Visualização 3D, feche a Janela de Visualização e, na Janela de Visualização 3D, clique com o botão direito do mouse e desmarque a opção Eixos para ocultá-los.

Paralelepípedo Oblíquo:

- 4. Usando *Ponto em Objeto*, crie um ponto I sobre o plano na Janela de Visualização 3D fora dos retângulos, preferencialmente próximo do ponto A ou B.
 - **Observação:** Se for necessário, gire a Janela de Visualização 3D usando *Girar Janela de Visualização 3D*.
- 5. Selecione *Reta Perpendicular*, clique sobre o plano na Janela de Visualização 3D e sobre o ponto criado anteriormente.
- Selecione *Prisma*, clique sobre o retângulo ABCD na Janela de Visualização 3D e sobre a reta perpendicular que passa por I, criando o ponto M.
- 7. Selecione Ângulo e clique sobre os pontos M, A e B.
- 8. Selecione *Distância*, *Comprimento ou Perímetro*, clique sobre os segmentos AB, AM e AD.

Paralelepípedo Reto-Retângulo:

- 9. Selecione *Extrusão para Prisma ou Cilindro*, clique sobre o retângulo EFGH e defina "6" para altura.
- 10. Selecione *Distância*, *Comprimento ou Perímetro*, clique sobre os segmentos FE, FO e FG.
- 11. Na Barra de Ferramentas, clique em Opções, Arredondamento e selecione 0 Casas Decimais.

Observação: Movimente, usando *Mover*, os pontos I e M para alterar, respectivamente, a inclinação e a altura do prisma oblíquo.

A construção também está disponibilizada neste vídeo:

https://youtu.be/rOp67U5ynlk

Sugestões de questões a serem exploradas a partir da atividade:

Movimente os pontos I e M de modo que o segmento AM tenha comprimento 6 e o ângulo exibido de uma das faces laterais meça 120°.

- 1) O que podemos concluir sobre o volume dos dois paralelepípedos?
- 2) Qual a área dos dois sólidos? E quais são as formas geométricas que as compõem?
- 3) O perímetro de cada uma das figuras vale quanto?

6. O NÚMERO π

Atividade baseada no Caderno do Aluno do Estado de São Paulo (SÃO PAULO, 2014c).

Objetivo: Possibilitar que os alunos identifiquem a razão constante π em diferentes circunferências.

Habilidade da BNCC associada:

"(EF07MA33) Estabelecer o número π como a razão entre a medida de uma circunferência e seu diâmetro, para compreender e resolver problemas, inclusive os de natureza histórica" (BRASIL, 2018, p. 309).

- 1. Na Janela de Visualização, clique com o direito do mouse e desmarque as opções Eixos e Malha.
- Selecione Controle Deslizante e crie o controle de nome "Raio", marque a opção Inteiro, min: "1", max: "30", Incremento: "0.5".
- Selecione Círculo dados Centro e Raio, clique sobre a Janela de Visualização, criando o centro A da circunferência, raio "Raio".
- 4. Selecione *Ponto* e crie os pontos Be C sobre a circunferência.
- 5. Crie o *Segmento* de extremidades A e B e renomei-o para R.

- 6. Selecione Reta, clique sobre os pontos A e C.
- 7. Selecione *Ponto* e marque a outra interseção da reta com a circunferência, criando o ponto D.
- 8. Crie o *Segmento* de extremidades D e C e renomei-o para Diâmetro.
- 9. Na Janela de Álgebra, desmarque a reta para ocultá-la.
- 10. Oculte o rótulo da circunferência e dos pontos.
- 11. Selecione *Distância*, *Comprimento ou Perímetro*, clique sobre a circunferência, R e Diâmetro.
- 12. Dê dois cliques sobre o texto da circunferência e apague "de c", deixando apenas Circunferência = valor.
- 13. Se desejar, altere as cores da circunferência, do Diâmetro e de R, que corresponda com a cor do controle deslizante.
- 14. No campo Entrada, digite "perímetroc/Diâmetro", inserindo o número a.

Inserindo texto:

Exemplo:
$$\frac{Circunferencia}{Diâmetro} = \frac{12.57}{4} = \pi$$

- Selecione Texto.
- Habilite Fórmula LaTex, selecione Fração, altere a e b para Circunferência e Diâmetro.
- Insira "=" e outra fração.
- Altere a selecionando o Objeto perímetroc, e altere b selecionando o Objeto Diâmetro.
- Insira "=" e, em Objeto, selecione o número a, que corresponde à razão.

6. O número π

A construção também está disponibilizada neste vídeo:

https://youtu.be/m0J4pctwoEc

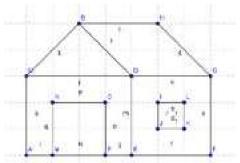
- 1) O que você observa ao dividir o comprimento da circunferência pelo diâmetro?
- 2) O que acontece com essa razão quando o raio varia?

7. SIMETRIA/REFLEXÃO

Objetivo: Explorar com os alunos o conceito de Simetria da Reflexão.

Habilidades da BNCC associadas:

"(EF04MA19) Reconhecer simetria de reflexão em figuras e em pares de figuras geométricas planas e utilizá-la na construção de figuras congruentes, com o uso de malhas quadriculadas e de softwares de geometria" (BRASIL, 2018, p. 293).


"(EF07MA20) Reconhecer e representar, no plano cartesiano, o simétrico de figuras em relação aos eixos e à origem" (BRASIL, 2018, p. 309).

"(EF07MA21) Reconhecer e construir figuras obtidas por simetrias de translação, rotação e reflexão, usando instrumentos de desenho ou softwares de geometria dinâmica e vincular esse estudo a representações planas de obras de arte, elementos arquitetônicos, entre outros" (BRASIL, 2018, p. 309).

- 1. Exiba Malha e Eixos.
- Clique com o botão direito do mouse sobre a Janela de Visualização, Janela de Visualização, Malha, marque a

7. Simetria/Reflexão

- opção Distância e altere para x: "1" e y: "1". Faça o mesmo nas abas EixoX e EixoY, selecionando 1 em Distância.
- 3. Faça um desenho de sua preferência com a ferramenta *Ponto*, usando os pontos da malha, e trace os contornos usando *Segmento*, como a figura a seguir.

- 4. Marque os pontos que considerar simétricos aos pontos dados em relação ao eixo y usando *Ponto*.
- 5. Usando a ferramenta *Segmento*, forme uma segunda figura com os pontos simétricos marcados no item anterior.
- 6. Na Janela de Álgebra, clique com o botão direito do mouse sobre Segmento e desmarque a opção Exibir Rótulo.
- 7. Use a ferramenta *Polígono*, clique nos pontos extremos dos segmentos que contornam a figura criada inicialmente e, em seguida, use a ferramenta *Reflexão em Relação a uma Reta* para verificar se a figura é simétrica.

Observação: Se desejar, selecione toda a figura com o mouse para usar a ferramenta *Reflexão em Relação a uma Reta*, refletindo, além do polígono, os pontos e segmentos, que devem ser coincidentes com os criados na figura simétrica.

A construção também está disponibilizada neste vídeo:

https://youtu.be/UoBYwevuj-k

- Podemos dizer que essas duas figuras são simétricas?
 Por quê? Em relação a qual referência?
 Verifique clicando sobre o polígono com a ferramenta Reflexão em Relação a uma Reta e, em seguida, sobre o eixo y.
- 2) Marque pontos simétricos em relação ao eixo x e verifique se estão corretos.

8. SOMA DOS ÂNGULOS INTERNOS DE UM TRIÂNGULO QUALQUER

NOS

Objetivo: Oportunizar aos estudantes que investiguem e compreendam que a soma dos ângulos internos de qualquer triângulo é sempre 180º e explorar ângulos em retas transversais que cortam um feixe de retas paralelas.

Habilidades da BNCC associadas:

"(EF07MA23) Verificar relações entre os ângulos formados por retas paralelas cortadas por uma transversal, com e sem uso de softwares de geometria dinâmica" (BRASIL, 2018, p. 308).

"(EF07MA24) Construir triângulos, usando régua e compasso, reconhecer a condição de existência do triângulo quanto à medida dos lados e verificar que a soma das medidas dos ângulos internos de um triângulo é 180°" (BRASIL, 2018, p. 309).

- 1. Oculte os Eixos e a Malha.
- 2. Construa uma *Reta* horizontal, passando pelos pontos A e B quaisquer.
- 3. Crie um *Ponto* C tal que C não pertença à reta AB e esteja na parte superior a reta AB.

Possibilidades do GeoGebra nas aulas de Matemática da Educação Básica

- 4. Trace uma Reta Paralela a reta AB passando pelo ponto C.
- 5. Trace uma Reta que passe por A e C.
- 6. Marque nesta reta, na parte superior a C, um *Ponto* D e, na parte inferior a A, marque o ponto E.
- 7. Trace uma *Reta* que passe por B e C.
- 8. Marque um *Ponto* F na reta paralela que passa por C à esquerda desse ponto e um ponto G à direita do ponto C.
- 9. Marque um *Ponto* H na reta AB à esquerda do ponto A e o ponto I à direita do ponto B, também sobre a reta AB.
- 10. Crie o triângulo ABC com a ferramenta Polígono.
- 11. Selecione Ângulo e clique sobre o triângulo.

Observação: Use *Mover* para movimentar os vértices.

A construção também está disponibilizada neste vídeo:

https://youtu.be/gKf0T2Wlc1E

- 1) Com a ferramenta ângulo, meça o ângulo BCG e FCA, clicando sobre esses pontos respectivamente.
 - a) O que pode observar em relação aos ângulos já destacados?

8. Soma dos ângulos internos de um triângulo qualquer

- b) Qual a soma dos ângulos FCA, ACB e BCG? Use o campo entrada.
- c) Qual a soma dos ângulos internos deste triângulo?
- d) Mova os pontos. O que observa em relação a soma dos ângulos internos do triângulo?
- Com a ferramenta ângulo calcule os ângulos abaixo e escreva como são classificados:
 - a) BCG e CBA
- d) HAE e CAB
- b) GCD e BAC
- e) GCD e EAB
- c) GCD e HAE
- f) EAB e CAB
- 3) Movimente os pontos. O que ocorre com os ângulos das alternativas anteriores? A classificação muda?

9. SOMA DOS ÂNGULOS INTERNOS DE UM POLÍGONO CONVEXO QUALQUER

Objetivo: Proporcionar aos alunos conjecturar e validar a relação para cálculo da soma dos ângulos internos de um polígono qualquer.

Habilidade da BNCC associada:

"(EF07MA27) Calcular medidas de ângulos internos de polígonos regulares, sem o uso de fórmulas, e estabelecer relações entre ângulos internos e externos de polígonos, preferencialmente vinculadas à construção de mosaicos e de ladrilhamentos" (BRASIL, 2018, p. 309).

- 1. Oculte os Eixos e a Malha.
- 2. Na Barra de Ferramentas, clique em Exibir, Planilha.
- 3. Na célula A1, digite "Polígono".
- Na célula A2, digite "Lados". Nessa linha serão inseridas a quantidade de lados de cada polígono.
- 5. Na célula A3, digite "Triângulo". Essa linha será preenchida com o número de triângulos formados a partir de um vértice.

- 6. Na célula A4, digite "Ângulos internos". Nessa linha será inserida a soma dos ângulos internos de cada polígono.
- Nas colunas B, C, D e E, digite "Triângulo", "Quadrilátero", "Pentágono" e "Polígono de n lados", respectivamente.
 A tabela ficará da seguinte forma:

Polígono	Triângulo	Quadrilátero	Pentágono	Polígono n lados
Lados				
Triângulos				
Ângulos internos				

8. Clique sobre a Janela de Visualização, selecione *Polígono* e crie um triângulo, um quadrilátero e um pentágono quaisquer.

Para preencher a tabela:

- Para preencher a linha Triângulos, selecione Segmento e crie os triângulos dentro dos polígonos, unindo um único vértice aos outros possíveis. Se desejar, clique com o botão direito do mouse sobre Segmento na Janela de Álgebra e desmarque a opção Exibir Rótulo.
- Para exibir os ângulos internos dos polígonos, selecione Ângulo e clique sobre eles.
- Para somar os ângulos, use o campo Entrada, digitando o nome de cada um deles na soma, criando um número na Janela de Álgebra, representado por uma letra que deverá ser digitada na tabela, no seu respectivo polígono. Exemplo: α+β+γ.

Possibilidades do GeoGebra nas aulas de Matemática da Educação Básica

A construção também está disponibilizada neste vídeo:

https://youtu.be/xONUr-vNeBk

- 4) Preencha a tabela com os dados observados.
- 5) Depois da construção, movimente os vértices dos polígonos usando *Mover* e relate o que acontece com as somas de seus ângulos internos.
- 6) Sem fazer contas e sem fazer construções, você saberia calcular a soma dos ângulos internos de um polígono de 11 lados? E de um polígono de N lados? Discuta com colegas e explique sua conclusão.