Classwork-Practice Problems 3.4-Exponential and Logarithms Equations

Pages: 322 to 325
In exercises $\mathbf{1 - 1 4}$, solve the exponential equations exactly for \mathbf{x}.
4. $\left(\frac{3}{5}\right)^{x+1}=\frac{25}{9}$
8. $125^{x}=5^{2 x-3}$
12. $16^{x-1}=2^{x^{2}}$
14. $10^{x^{2}-8}=100^{x}$

In Exercises 15-40, sole the exponential equations exactly and then approximate your answers to the three decimal places.
16. $15=7^{3-2 x}$
20. $21-4 e^{0.1 x}=5$
22. $3\left(2^{x}\right)+8=35$
26. $4\left(10^{3 x}\right)=20$
34. $\left(3^{x}-3^{-x}\right)\left(3^{x}+3^{-x}\right)=0$
36. $\frac{17}{e^{x}+4}=2$
40. $\frac{28}{10^{x}+3}=4$

In Exercises 41-58, solve the logarithmic equations exactly.
42. $\log _{2}(3 x-1)=3$
46. $\log x^{2}+\log x=3$
50. $\log _{2}(x+1)+\log _{2}(4-x)=\log _{2}(6 x)$
54. $\log _{3}(7-2 x)-\log _{3}(x+2)=2$
58. $\log _{2}(x+1)+\log _{2}(x+5)-\log _{2}(2 x+5)=2$

In Exercises 59-72, solve the logarithmic equations and then approximate your answers, if possible, to three decimal places.

6o. $\ln (4 x-7)=3$
64. $\log (3 x-5)=-1$
68. $\ln (4 x)+\ln (2+x)=2$

7o. $\log _{5}(x+1)-\log _{5}(x-1)=\log _{5} x$
72. $\log (\sqrt{1-x})-\log (\sqrt{x+2})=\log x$
74. Business. A local business purchased a new company van for $\$ 45,000$. After 2 years the book value of the van is $\$ 30,000$.
a. Find an exponential model for the value of the van using $V(t)=V_{0} e^{k t}$, where V is the value of the van in dollars and t is time in years.
b. Approximately how many years will it take for the book value of the van to drop to $\$ 20,000$?
84. Investments. Money invested in an account that compounds interest continuously at a rate of 3% a year is modeled by $A=A_{0} e^{0.03 t}$, where A is the amount in the investment after t years and A_{0} is the initial investment. How long will it take the initial investment to double?

In Exercises 89-94, determine whether each statement is true or false.

92. $e^{x}=-2$ has no solution.
93. The division of two logarithms with the same base is equal to the logarithm of the subtraction.

Challenging Questions:

95. Solve for x in terms of b :
$\frac{1}{3} \log _{b}\left(x^{3}\right)+\frac{1}{2} \log _{b}\left(x^{2}-2 x+1\right)=2$

Answer

95. $x=\frac{1+\sqrt{1+4 b^{2}}}{2}$
96. Solve exactly:
$2 \log _{b}(x)+2 \log _{b}(1-x)=4$.
97. State the range of values of x that the following identity holds: $e^{\ln \left(x^{2}-a\right)}=x^{2}-a$.
