Classwork-Practice Problems 3.4-Exponential and Logarithms Equations

Pages: 322 to 325

In exercises 1-14, solve the exponential equations exactly for x.

4.
$$\left(\frac{3}{5}\right)^{x+1} = \frac{25}{9}$$

8.
$$125^x = 5^{2x-3}$$

12.
$$16^{x-1} = 2^{x^2}$$

14.
$$10^{x^2-8} = 100^x$$

In Exercises 15-40, sole the exponential equations exactly and then approximate your answers to the three decimal places.

16.
$$15 = 7^{3-2x}$$

20.
$$21-4 e^{0.1x}=5$$

22.
$$3(2^x) + 8 = 35$$

26.
$$4(10^{3x}) = 20$$

34.
$$(3^x - 3^{-x})(3^x + 3^{-x}) = 0$$

36.
$$\frac{17}{e^x+4}=2$$

40.
$$\frac{28}{10^x+3}=4$$

In Exercises 41-58, solve the logarithmic equations exactly.

42.
$$\log_2(3x-1)=3$$

46.
$$\log x^2 + \log x = 3$$

50.
$$\log_2(x+1) + \log_2(4-x) = \log_2(6x)$$

54.
$$\log_3(7-2x) - \log_3(x+2) = 2$$

58.
$$\log_2(x+1) + \log_2(x+5) - \log_2(2x+5) = 2$$

In Exercises 59-72, solve the logarithmic equations and then approximate your answers, if possible, to three decimal places.

1

60.
$$\ln(4x-7)=3$$

64.
$$\log(3x-5)=-1$$

68.
$$\ln(4x) + \ln(2+x) = 2$$

70.
$$\log_5(x+1) - \log_5(x-1) = \log_5 x$$

72.
$$\log\left(\sqrt{1-x}\right) - \log\left(\sqrt{x+2}\right) = \log x$$

- **74. Business.** A local business purchased a new company van for \$45,000. After 2 years the book value of the van is \$30,000.
 - **a.** Find an exponential model for the value of the van using $V(t) = V_0 e^{kt}$, where V is the value of the van in dollars and t is time in years.
 - **b.** Approximately how many years will it take for the book value of the van to drop to \$20,000?
- **84. Investments.** Money invested in an account that compounds interest continuously at a rate of 3% a year is modeled by $A = A_0 e^{0.03t}$, where A is the amount in the investment after t years and A_0 is the initial investment. How long will it take the initial investment to double?

In Exercises 89-94, determine whether each statement is true or false.

- **92.** $e^x = -2$ has no solution.
- 94. The division of two logarithms with the same base is equal to the logarithm of the subtraction.

Challenging Questions:

95. Solve for x in terms of b:

$$\frac{1}{3}\mathrm{log}_b\big(x^3\big)+\frac{1}{2}\mathrm{log}_b\big(x^2-2x+1\big)=2$$

95.
$$x = \frac{1+\sqrt{1+4b^2}}{2}$$

96. Solve exactly:

$$2 \ \log_b(x) + 2 \ \log_b(1-x) = 4.$$

98. State the range of values of x that the following identity holds: $e^{\ln(x^2-a)} = x^2 - a$.

2