Wichtig: Tragen Sie bitte in die Tabelle nicht die Ergebnisse der Rechnungen, sondern die Rechenausdrücke, die zu den Ergebnissen führen, ein (siehe Bsp. → also Produkte aus Brüche mit Potenzen und ganzen Zahlen). Für die Wahrscheinlichkeiten nutzen Sie dann bitte die zweite Tabelle!

Ereignis: Anzahl der Erfolge	Zugehörige Pfade	Anzahl der Pfade	Wahrsch. jedes einzelnen Pfades	Wahrsch. des Ereignisses
X = 0	ММММ	1	$\left(\frac{6}{7}\right)^4$	0,54
X = 1	MMME	4	$\left(\frac{6}{7}\right)^3 \left(\frac{1}{7}\right)$	0,26
X = 2	MMEE	6	$\left(\frac{6}{7}\right)^2 \left(\frac{1}{7}\right)^2$	0,09
X = 3	H EEE	4	(G) (G)	0,01
X = 4	EEEE	1	$\left(\frac{6}{7}\right)^{0}\left(\frac{1}{7}\right)^{4}$	9,0004
Anzahl der				

Anzahl der Erfolge: X=k	0	1	2	3	4
P(X=k)	54/	36/	3/	01961	0,04/

<u>Aufgabe:</u> Wie können die Ergebnisse in der letzten Tabelle durch eine Bernoulli-Formel mit einer Bernoulli-Kette ausgedrückt werden?

$$\frac{Bsp}{f'_{1}} = \frac{1}{3} = \frac{1}{3} P(X=2) = \binom{4}{3} \binom{6}{7}^{3} \binom{1}{7}^{7}$$

$$\frac{1}{7} = 4 \binom{1}{3} \binom{1}{7} \binom{$$