Linear Transformations

$$
\vec{v}^{\prime}=A \vec{v}
$$

Where A maps \vec{v} onto \vec{v}^{\prime} as follows:

How can we multiply a vector and a matrix? A vector in the coordinate plane is analogous to a column matrix of the same order, making this a possible mathematical operation.

$$
\langle x, y\rangle \equiv\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad\langle x, y, z\rangle \equiv\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Reflections
$A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \quad \vec{v}^{\prime}$ is a reflection over the x -axis
$A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \quad \vec{v}^{\prime}$ is a reflection over the y -axis
$A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad \vec{v}^{\prime}$ is a reflection over the line $\mathrm{y}=\mathrm{x}$

Dilations
$A=\left[\begin{array}{cc}k & 0 \\ 0 & 1\end{array}\right] \quad \vec{v}^{\prime}$ is a horizontal expansion when $\mathrm{k}>1$
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right] \quad \vec{v}^{\prime}$ is a vertical expansion when $\mathrm{k}>1$
Contractions
$A=\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right] \quad \vec{v}^{\prime}$ is a horizontal contraction when $0<\mathrm{k}<1$
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right] \quad \vec{v}^{\prime}$ is a vertical contraction when $0<\mathrm{k}<1$

Shearing
$A=\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right] \quad \vec{v}^{\prime}$ is a horizontal shearing deformation
$A=\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right] \quad \vec{v}^{\prime}$ is a vertical shearing deformation
Rotations
$A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \quad \vec{v}^{\prime}$ is a CCW rotation about the origin θ angular units
$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right] \quad \vec{v}^{\prime}$ is a CCW rotation about the x -axis θ angular units
$A=\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right] \quad \vec{v}^{\prime}$ is a CCW rotation about the y -axis θ angular units
$A=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ is a CCW rotation about the z -axis θ angular units

Triangle Area and Convex Tetrahedral Volume

For a triangle with vertices at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$

$$
\text { Area }=(\pm) \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

For a tetrahedron with vertices at $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right),\left(x_{4}, y_{4}, z_{4}\right)$

$$
\text { Volume }=(\pm) \frac{1}{6}\left|\begin{array}{llll}
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & z_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1 \\
x_{4} & y_{4} & z_{4} & 1
\end{array}\right|
$$

