Linear Transformations
v =AU

Where A maps ¥ onto v' as follows:

How can we multiply a vector and a matrix? A vector in the coordinate plane is analogous to a
column matrix of the same order, making this a possible mathematical operation.
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v' is a reflection over the x-axis
v" is a reflection over the y-axis

v" is a reflection over the line y=x

v’ is a horizontal expansion when k>1

v’ is a vertical expansion when k>1

v' is a horizontal contraction when O<k<1

v’ is a vertical contraction when O<k<1
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¥’ is a horizontal shearing deformation

v’ is a vertical shearing deformation

v" is a CCW rotation about the origin 8 angular units

v’ is a CCW rotation about the x-axis € angular units

v" is a CCW rotation about the y-axis 6 angular units

is a CCW rotation about the z-axis 6 angular units

Triangle Area and Convex Tetrahedral Volume

For a triangle with vertices at (x,y1), (x5, ¥2), (x3,¥3)
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For a tetrahedron with vertices at (x4, V1,21), (X3, V2, 22), (X3,V3,23), (X4, Va4, Z4)
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