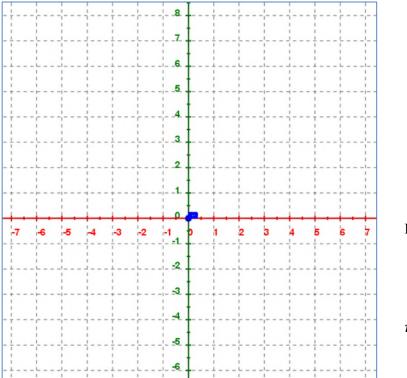


Line – General and Normal Forms


Objectives: 1. Define and graph the general form of a line and the normal form of a line.2. Show the relationship between the general and normal forms of a line.

Equations of a line in \mathbb{R}^2

<u>Algebraic Forms:</u> $\vec{p} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ is the vector form of the point $p = (p_1, p_2)$ $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the vector form of any point $x = (x_1, x_2)$

General form of a line: ax + by = c

On the coordinate grid, plot and label the points (1, 1) and (2,-1). Graph the line **L** defined by these points. Determine the equation of **L** and put it into the general form of a line.

Find and state the slope of this line.

m =

Define the direction vector \vec{d} from point (1, 1) to point (2,-1)

Graph and label this vector on the line L.

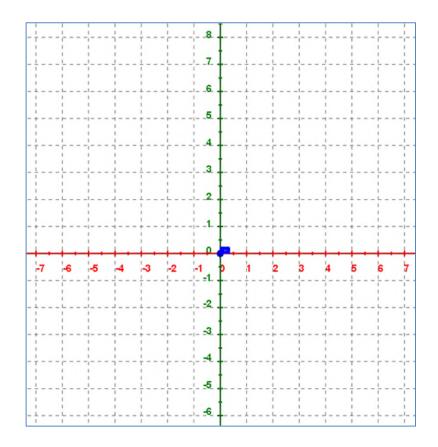
 $\overrightarrow{d} =$

Transforming Linear Algebra Education with GeoGebra Applets NSF TUES Grant Award ID: 1141045

<u>Normal form of a line:</u> $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$ or $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$

If \vec{n} is a normal vector (i.e., perpendicular) to \vec{d} , then $\vec{n} \cdot \vec{d} = 0$

Find a vector \vec{n} , that makes this equation true for the vector \vec{d} defined from point (1, 1) to point (2, -1).


If point = (1, 1), then $\vec{p} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Using \vec{n} state each version of the Normal Form of *L*.

 $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$ becomes _____ $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$ becomes _____

Explain how your results relate to the General Form of *L*.

Draw the line, graphing and labeling \vec{n} , \vec{x} , and \vec{p}

