Line - General and Normal Forms

Objectives: 1. Define and graph the general form of a line and the normal form of a line.
2. Show the relationship between the general and normal forms of a line.

Equations of a line in \mathbb{R}^{2}
Algebraic Forms: $\overrightarrow{\boldsymbol{p}}=\left[\begin{array}{c}\boldsymbol{p}_{\boldsymbol{1}} \\ \boldsymbol{p}_{2}\end{array}\right]$ is the vector form of the point $\boldsymbol{p}=\left(\boldsymbol{p}_{\mathbf{1}}, \boldsymbol{p}_{2}\right)$

$$
\begin{array}{r}
\vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right] \text { is the vector form of any point } x=\left(x_{1}, x_{2}\right) \\
\text { General form of a line: } \quad a x+b y=c
\end{array}
$$

On the coordinate grid, plot and label the points $(1,1)$ and $(2,-1)$. Graph the line \mathbf{L} defined by these points. Determine the equation of \mathbf{L} and put it into the general form of a line.

Define the direction vector $\overrightarrow{\boldsymbol{d}}$ from point $(1,1)$ to point $(2,-1)$

Find and state the slope of this line.
$m=$

Graph and label this vector on the line \mathbf{L}.

$$
\vec{d}=
$$

$$
\text { Normal form of a line: } \quad \vec{n} \bullet \vec{x}=\vec{n} \bullet \vec{p} \quad \text { or } \quad \vec{n} \bullet(\vec{x}-\vec{p})=0
$$

If $\overrightarrow{\boldsymbol{n}}$ is a normal vector (i.e., perpendicular) to $\overrightarrow{\boldsymbol{d}}$, then $\overrightarrow{\boldsymbol{n}} \bullet \overrightarrow{\boldsymbol{d}}=\mathbf{0}$
Find a vector $\overrightarrow{\boldsymbol{n}}$, that makes this equation true for the vector $\overrightarrow{\boldsymbol{d}}$ defined from point $(1,1)$ to point $(2,-1)$.

If point $=(\mathbf{1}, \mathbf{1})$, then $\vec{p}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Using $\overrightarrow{\boldsymbol{n}}$ state each version of the Normal Form of \boldsymbol{L}.
$\overrightarrow{\boldsymbol{n}} \bullet \overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{n}} \bullet \overrightarrow{\boldsymbol{p}}$ becomes \qquad $\overrightarrow{\boldsymbol{n}} \bullet(\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{p}})=\mathbf{0}$ becomes \qquad

Explain how your results relate to the General Form of \boldsymbol{L}.

Draw the line, graphing and labeling $\overrightarrow{\boldsymbol{n}}, \overrightarrow{\boldsymbol{x}}$, and $\overrightarrow{\boldsymbol{p}}$

