Geome	try Regents Lomac 2016-2017	Date <u>9/30</u>	due <u>10/3</u>	Constructing Centers of	Rotation 2.3R	
Name	Loop construct contains of unit-time		Per		• • •	
LO:	I can construct centers of rotation I can use function notation to des		s in the plane.	_		
	NOW On the back of this packe		·			
internet	Center of Rotation					
internet	Use the Geogebratube link to exp	olore centers of	of rotation with	the guidance below.		
	We know from lesson 2.1R that a	preimage poi	int and its ima	ge are fr	rom the center of	
	rotation. We can use that to devise	se a way to co	onstruct cente	rs of rotation.		
	(a) Drag point C to change the an	gle of rotatior	n. As D'E'F' rot	ates, what shape does D' make as it	moves?	
	To check your answer, check the	box to show I	rotation path f	or D. Repeat by watching E' and F'.	What shape is	
	always made as a point is rotated	?				
	(b) Show all three rotation paths.	Is the center	of rotation goir	ng to be the same for all three circula	r paths that you	
	described in part (a)? Now we wi	ll need to figu	re out how we	e can construct that center.		
	(c) Check the boxes to show segr	ment DD' and	the perpendic	cular bisector of DD'. Is every point of	on the	
	perpendicular bisector equidistant	t from D and I	D'? Do	you think the center of rotation will	have to be on this	
	perpendicular bisector?	Verify your an	swer by checl	king the "Show point" box.		
	(d) Uncheck the boxes for show	point, DD' and	the perpendi	cular bisector of DD' and repeat the	process in part (c)	
	for EE' and FF'.					
	(e) Was the center of rotation on a	all 3 perpendi	cular bisectors	Show all three perpendicular	lar bisectors and	
	the center of rotation. The center of rotation is located where					
				This makes sense because the cente	r of rotation must	
		•	-	corresponding image, and poi		
	perpendicular bisector are		fro	m the endpoints of the segment it bis	ects.	
	SUMMARY:					
	The center of rotation that maps a figure to its rotated image is located at the					
	of the of			the		
	segments connecting each preimage point to its corresponding image point.					
	Constructing perpendicular bisectors is enough to locate the center of				er of	
	rotation.					

(3) Rotations Demonstrate rotations of the plane with transparencies and dry erase markers and name them with function notation. Use function notation to describe each rotation. Verify that each diagram illustrates a rotation by tracing the original figure and rotating according to the function notation that you have written.

N8-N9 Sort cards

For each preimage/image pair, construct the center of rotation and label it X.

(a)

(b)

3

	to its	of segments that connect a and mark the location where the
		intersect. This point
	of intersection is the	
](7)	Exit Ticket ON THE LAST PAGE	
(8) compass	Homework (1) Describe each reflection with function notation (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	on. \Box (b) A' k W' S' A
	(2) Does the diagram at right show a triangle ar across the line between them? Describe h	
	(3) Sketch each of the following: (SEE NOTES)	

(8) compass Homework (continued) (compass and straightedge for all constructions)

(4) Construct the center of rotation and label it Z

(4) Construct the center of rotation and label it Z First, figure out which vertices are corresponding (letter A maps to letter ____, B to ____, C to ____, D to ____).

Exit Ticket	Name	D	Date	Per	
-------------	------	---	------	-----	--

(1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:

(a) Use a compass and straightedge to construct the center of rotation that maps triangle ABC to triangle DEF. Label the center of rotation O.

7 2.3R

(b) Name the angle of rotation for the construction in part (a).	
--	--

(c) Write the function notation for the rotation you did in part (a).

8 DO NOW	Name	Date	_Per
(1) (a)	Draw \overline{AB} with midpoint M.	(b) Draw ∠TVS with v	vertex V.

(2) Is vertex V a midpoint? How do you know? Is midpoint M also a vertex? How do you know?

(3) What word is written below? When you turn your paper upside-down, what does the word say?

How does this relate to today's Learning Objective (LO)?

2.3R

