

\square DO NOW On the back of this packet

Center of Rotation

Use the Geogebratube link to explore centers of rotation with the guidance below.
We know from lesson 2.1R that a preimage point and its image are \qquad from the center of rotation. We can use that to devise a way to construct centers of rotation.
(a) Drag point C to change the angle of rotation. As D'E'F' rotates, what shape does D' make as it moves? \qquad
To check your answer, check the box to show rotation path for D. Repeat by watching E' and F'. What shape is always made as a point is rotated? \qquad
(b) Show all three rotation paths. Is the center of rotation going to be the same for all three circular paths that you described in part (a)? Now we will need to figure out how we can construct that center.
(c) Check the boxes to show segment DD' and the perpendicular bisector of DD'. Is every point on the perpendicular bisector equidistant from D and D '? \qquad Do you think the center of rotation will have to be on this perpendicular bisector? \qquad Verify your answer by checking the "Show point" box.
(d) Uncheck the boxes for show point, DD' and the perpendicular bisector of DD' and repeat the process in part (c) for EE' and FF'.
(e) Was the center of rotation on all 3 perpendicular bisectors? \qquad Show all three perpendicular bisectors and the center of rotation. The center of rotation is located where \qquad
\qquad . This makes sense because the center of rotation must be \qquad from each preimage and its corresponding image, and \qquad points on a
perpendicular bisector are \qquad from the endpoints of the segment it bisects.

SUMMARY:

The center of rotation that maps a figure to its rotated image is located at the
\qquad of the \qquad of the
segments connecting each preimage point to its corresponding image point. Constructing ___ perpendicular bisectors is enough to locate the center of rotation.
\square (2) Rotations notes Complete the reflection notes on page N9
N9
Notation:

The angle of rotation is named by points in the order:
preimage to center of rotation to image
\qquad or

Name the angle of rotation at right in 3 ways

or

\qquad
\square (3) Rotations Demonstrate rotations of the plane with transparencies and dry erase markers and name them with function notation. Use function notation to describe each rotation. Verify that each diagram illustrates a rotation by tracing the original figure and rotating according to the function notation that you have written.

Function: \qquad Function: \qquad Function: \qquad

I know that all three of these are rotation functions because (1) a rotation function is \qquad
and (2) when I traced and rotated each figure, \qquad
\square (4) Rotations Find the center of rotation
Sort cards
(a) \square Draw a segment connecting points \qquad .
(b) \qquad Using a compass and straightedge, construct the perpendicular bisector of this segment.
(c) \square Draw a segment connecting points \qquad .

(d) \square Construct the perpendicular bisector of this segment.
(e) \square Label the point where the perpendicular bisectors intersect point C .
(f)
\square Point C is the
(Use tracing paper to check the rotation)

(g) Write the rotation function: \qquad (name the angle of rotation)

Rotations Find the center of rotation
$\underset{\substack{\mathrm{NB}-\mathrm{Ng} \\ \text { Sortcards }}}{ } \quad$ For each preimage/image pair, construct the center of rotation and label it X.
(a)
(b)

\qquad
\qquad
$\square(6)$ BIG IDEA: To construct a center of rotation, I need to construct at least two of segments that connect a
\qquad to its \qquad and mark the location where the
two \qquad
\qquad intersect. This point of intersection is the \qquad .
\square (7) Exit Ticket
ON THE LAST PAGE
\square (8) Homework
compass
\square (1) Describe each reflection with function notation.

\square (b)

\square (2) Does the diagram at right show a triangle and its reflection across the line between them? \qquad Describe how you know:
\qquad
\qquad
\qquad
\qquad
\qquad

\square (3) Sketch each of the following: (SEE NOTES)
(a) $\overrightarrow{Q R} \perp \overleftrightarrow{S T}$
(b) $\overleftrightarrow{V W}$ bisects $\overline{X Y}$
(c) $\angle L M N \cong \angle O P Q$
\square (8) Homework (continued) (compass and straightedge for all constructions)
compass $\quad \square$ (4) Construct the center of rotation and label it Z

\square (4) Construct the center of rotation and label it Z
First, figure out which vertices are corresponding (letter A maps to letter \qquad B to \qquad , C to \qquad D to \qquad

(1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:
\square (a) Use a compass and straightedge to construct the center of rotation that maps triangle ABC to triangle DEF. Label the center of rotation 0 .

(b) Name the angle of rotation for the construction in part (a). \qquad
\square (c) Write the function notation for the rotation you did in part (a). \qquad
\qquad Per
(1)
(a) Draw $\overline{A B}$ with midpoint M .
(b) Draw \angle TVS with vertex V .
(2) Is vertex V a midpoint? How do you know? Is midpoint M also a vertex? How do you know?
(3) What word is written below? When you turn your paper upside-down, what does the word say?

How does this relate to today's Learning Objective (LO)?
JjJUE

