[MAA 5.4] TANGENT AND NORMAL LINES

SOLUTIONS

Compiled by: Christos Nikolaidis

O. Practice questions

1. (a) $f(x)=2 x^{2}-12 x+10, f^{\prime}(x)=4 x-12$
(b) (i) At $x=1, y=0, \quad \operatorname{Point}(1,0)$
$m_{T}=-8, \quad m_{T}=\frac{1}{8}$
Tangent line: $y=-8(x-1) \quad$ (i.e. $y=-8 x+8)$
Normal line: $y=\frac{1}{8}(x-1) \quad$ (i.e. $\left.y=\frac{1}{8} x-\frac{1}{8}\right)$
(ii) At $x=2, y=-6, \quad \operatorname{Point}(2,-6)$
$m_{T}=-4, \quad m_{T}=\frac{1}{4}$
Tangent line: $y+6=-4(x-2) \quad($ OR $y=-4 x+2)$
Normal line: $y+6=\frac{1}{4}(x-2) \quad$ (OR $y=\frac{1}{4} x-\frac{13}{2}$)
(iii) At $x=3, y=-8, \quad \operatorname{Point}(3,-8)$
$m_{T}=0$ (horizontal tangent)
Tangent line: $y=-8$, Normal line: $x=3$
2. $f(x)=2 x^{2}-12 x+10, f^{\prime}(x)=4 x-12$
(a) $4 x-12=4 \Leftrightarrow 4 x=16 \Leftrightarrow x=4$

Then $y=-6 \quad$ Point $(4,-6)$
Tangent $y+6=4(x-4) \quad($ OR $y=4 x-22)$
(b) $4 x-12=-4 \Leftrightarrow 4 x=8 \Leftrightarrow x=2$

Then $y=-6 \quad$ Point $(2,-6)$
Tangent $y+6=-4(x-2) \quad($ OR $y=-4 x+2)$
3. (a) $f^{\prime}(x)=\mathrm{e}^{x} \times(-\sin x)+\cos x \times \mathrm{e}^{x}=\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x$
$m_{T}=f^{\prime}(\pi)=\mathrm{e}^{\pi} \cos \pi-\mathrm{e}^{\pi} \sin \pi=-\mathrm{e}^{\pi}$
gradient of normal $m_{N}=\frac{1}{\mathrm{e}^{\pi}}$
(b) $\quad m_{T}=f^{\prime}\left(\frac{\pi}{4}\right)=0$
4. METHOD A: $f(x)=x^{2}$, tangent line $y=m x-25$

At the point of contact:
Equal functions: $\quad f(x)=y \quad \Rightarrow x^{2}=m x-25$
Equal derivatives: $f^{\prime}(x)=y^{\prime} \quad \Rightarrow 2 x=m$
We solve the system:
(1) and (2): $\quad x^{2}=(2 x) x-25 \Leftrightarrow x^{2}=2 x^{2}-25 \Leftrightarrow x^{2}=25 \Leftrightarrow x= \pm 5$

From (2): if $x=5, m=10$,
if $x=-5, m=-10$
METHOD B: $f(x)=x^{2}$, line $y=m x-25$

$$
f(x)=y \Leftrightarrow x^{2}=m x-25 \Leftrightarrow x^{2}-m x+25=0
$$

The line is a tangent if $\Delta=0 \Leftrightarrow m^{2}-100=0 \Leftrightarrow m= \pm 10$
5. (Only method A applies here!)
(a) $y=x^{4}$ and tangent line $y=m x-48$

At the point of contact:
Equal functions: $\quad x^{4}=m x-48$
Equal derivatives: $\quad 4 x^{3}=m$
We solve the system:
(1) and (2): $x^{4}=\left(4 x^{3}\right) x-48 \Leftrightarrow x^{4}=4 x^{4}-48 \Leftrightarrow 3 x^{4}=48 \Leftrightarrow x^{4}=16 \Leftrightarrow x= \pm 2$

From (2): If $x=2, m=32$, if $x=-2, m=-32$
(b) If $m=32$ the tangent line is $y=32 x-48$

If $m=-32$ the tangent line is $y=-32 x-48$

6. METHOD A

Line passing through $\mathrm{A}(0,-48): y+48=m(x-0) \Rightarrow y=m x-48$
[then we work as in question 5]
At the point of contact: $\quad x^{4}=m x-48 \quad$ (1)

$$
\begin{equation*}
4 x^{3}=m \tag{2}
\end{equation*}
$$

We solve the system:
(1) and (2): $x^{4}=\left(4 x^{3}\right) x-48 \Leftrightarrow x^{4}=4 x^{4}-48 \Leftrightarrow 3 x^{4}=48 \Leftrightarrow x^{4}=16 \Leftrightarrow x= \pm 2$

From (2): If $x=2, m=32$, if $x=-2, m=-32$
If $m=32$ the tangent line is $y=32 x-48$
If $m=-32$ the tangent line is $y=-32 x-48$

METHOD B

We find the general tangent at $\left(a, a^{4}\right)$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}, m_{T}=4 a^{3}
$$

Tangent line: $y-a^{4}=4 a^{3}(x-a) \quad \rightarrow \quad y=4 a^{3} x-3 a^{4}$
Passes through A(0, -48): $-3 a^{4}=-48 \Leftrightarrow a^{4}=16 \Leftrightarrow a= \pm 2$
For $a=2, \quad y=32 x-48$
For $a=-2, \quad y=-32 x-48$

A. Exam style questions (SHORT)

7. Let $f(x)=5 x^{2}+10, f^{\prime}(x)=10 x$

At $\mathrm{P}(1,15), m_{T}=10$, Tangent: $y-15=10(x-1) \Rightarrow y=10 x+5$,
8. $y=x^{3}+1 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}$

At $x=1, y=2, \quad \operatorname{Point}(1,2)$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}, \quad m_{T}=3
$$

Equation of tangent: $y-2=3(x-1) \Rightarrow y=3 x-1$
$m_{N}=-\frac{1}{3}$
Equation of normal: $y-2=-\frac{1}{3}(x-1) \Rightarrow 3 y-6=-x+1 \Rightarrow x+3 y-7=0$ OR $\mathrm{y}=-\frac{1}{3} \mathrm{x}+2 \frac{1}{3}$
9. $f^{\prime}(x)=12 x^{2}+2$

When $x=1, f(1)=6$
When $x=1, f^{\prime}(1)=14$
Equation is $y-6=-\frac{1}{14}(x-1)\left(y=-\frac{1}{14} x+\frac{85}{14}, y=-0.0714 x+6.07\right)$
10. $y=(x-1)^{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=4(x-1)^{3}$
(i) At $x=0, y=1, m_{T}=-4, m_{N}=\frac{1}{4}$.

Tangent: $y-1=-4(x-0) \Rightarrow y=-4 x+1$,
Normal $y-1=\frac{1}{4}(x-0) \Rightarrow y=\frac{1}{4} x+1$
(iii) At $x=1, y=0, m_{T}=0, m_{N}=$ not defined.

Tangent: $y=0$, Normal $x=1$
11. (a) gradient is 0.6
(b) $y-\ln 5=0.6(x-2) \quad$ OR directly by GDC: $y=0.6 x+0.409$
(c) at $x=2, y=\ln 5(=1.609 \ldots)$
gradient of normal $=-5 / 3=-1.6666 \ldots$
normal: $y-\ln 5=-\frac{5}{3}(x-2) \quad$ OR directly by GDC $y=-1.66666 x+4.94277$
For $y=0: x=2.97($ accept 2.96$)$
coordinates of R are $(2.97,0)$

12. Use GDC, Graph, Sketch tangent and Sketch normal

(a) $y=1.92 x-1.92$
(b) $y=-0.52 x+0.520$
13.
(a) $f^{\prime}(x)=\frac{1}{3 x+1} \times 3 \quad\left(=\frac{3}{3 x+1}\right)$
(b) Hence when $x=2$, gradient of tangent $=\frac{3}{7}$

$$
\Rightarrow \text { gradient of normal is }-\frac{7}{3}
$$

$$
y-\ln 7=-\frac{7}{3}(x-2)
$$

$$
y=-\frac{7}{3} x+\frac{14}{3}+\ln 7
$$

$$
\text { (accept } y=-2.33 x+6.61 \text {) }
$$

14. (a) At $x=a, h(x)=a^{\frac{1}{5}}$ $h^{\prime}(x)=\frac{1}{5} x^{-\frac{4}{5}}=>h^{\prime}(a)=\frac{1}{5 a^{\frac{4}{5}}}=$ gradient of tangent $\Rightarrow y-a^{\frac{1}{5}}=\frac{1}{5 a^{\frac{4}{5}}}(x-a)=\frac{1}{5 a^{\frac{4}{5}}} x-\frac{1}{5} a^{\frac{1}{5}} \Rightarrow y=\frac{1}{5 a^{\frac{4}{5}}} x+\frac{4}{5} a^{\frac{1}{5}}$
(b) tangent intersects x-axis $\Rightarrow>y=0 \Rightarrow \frac{1}{5 a^{\frac{4}{5}}} x=-\frac{4}{5} a^{\frac{1}{5}}$ $=>x=5 a^{\frac{4}{5}}\left(-\frac{4}{5} a^{\frac{1}{5}}\right)=-4 a$
15. $y=x^{2}-x \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x-1$.

Line parallel to $y=5 x \Rightarrow 2 x-1=5 \Rightarrow x=3$ so $y=6$
Point (3, 6)
16. gradient of tangent $=8$
$f^{\prime}(x)=4 k x^{3}$
$4 k x^{3}=8 \Rightarrow k x^{3}=2$
substituting $x=1, k=2$
17. (a) $f^{\prime}(x)=6 x-5$
(b) $f^{\prime}(p)=7 \Rightarrow 6 p-5=7 \Rightarrow p=2$
(c) $\operatorname{Setting} y(2)=f(2)$

Substituting $y(2)=7 \times 2-9=5$, and $f(2)=3 \times 2^{2}-5 \times 2+k=k+2$
$k+2=5 \Rightarrow k=3$
18. (a) $f(1)=3 \Rightarrow p+q=3$
$f^{\prime}(x)=2 p x+q$
$f^{\prime}(1)=8 \Rightarrow 2 p+q=8$
$p=5, q=-2$
(b) $\quad f^{\prime}(x)=10 x-2$
$f^{\prime}(0.2)=0$, at $x=0.2 \quad y=-0.2$
Tangent $y=-0.2$ (horizontal line)
Normal $x=0.2$ (vertical line)
19. (a) $f^{\prime}(x)=-6 \sin 2 x+2 \sin x \cos x=-6 \sin 2 x+\sin 2 x=-5 \sin 2 x$
(b) For $x=0, y=3$. gradient $\mathrm{m}_{\mathrm{T}}=0$

Tangent line: $y=3$
(c) $k=\frac{\pi}{2}(=1.57)$
20. METHOD 1
(a) The equation of the tangent is $y=-4 x-8$.
(b) The point where the tangent meets the curve again is $(-2,0)$.

METHOD 2

(a) $y=-4$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+8 x+1=-4$ at $x=-1$.

Therefore, the tangent equation is $y=-4 x-8$.
(b) without GDC for HL only

This tangent meets the curve when $-4 x-8=x^{3}+4 x^{2}+x-6$ which gives $x^{3}+4 x^{2}+5 x+2=0 \Rightarrow(x+1)^{2}(x+2)=0$.
The required point of intersection is $(-2,0)$.
21. For the curve, $y=7$ when $x=1 \Rightarrow a+b=14$, and
$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}+2 a x+b=16$ when $x=1 \Rightarrow 2 a+b=10$.
Solving gives $a=-4$ and $b=18$.
22. $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{k}{x^{2}}+\frac{2}{x} \quad$ When $x=2$, gradient of normal $=-\frac{3}{2}$
$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{3} \Rightarrow-\frac{k}{4}+1=\frac{2}{3} \Rightarrow k=\frac{4}{3}$
23.

METHOD 1

Line and graph intersect when $3 x^{2}-x+4=m x+1$
i.e. $3 x^{2}-(1+m) x+3=0$
$y=m x+1$ tangent to graph \Rightarrow
$3 x^{2}-(1+m) x+3=0$ has equal roots
i.e. $\quad b^{2}-4 a c=0$
$\Rightarrow(1+m)^{2}-36=0$
$\Rightarrow m=5, m=-7$
METHOD 2
$f^{\prime}(x)=6 x-1$
$3 x^{2}-x+4=m x+1$
Substitute $m=6 x-1$ into above
$3 x^{2}-6 x^{2}+3=0$
$\Rightarrow x= \pm 1$
$\Rightarrow m=5$. $m=-7$
24. Method 1: $y=4-x^{2} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2 x$

At the point of contact $2 x=m$ and $m x+5=4-x^{2}$
Solving the system gives $m= \pm 2$.
Method 2: For intersection: $m x+5=4-x^{2}$ or $x^{2}+m x+1=0$.
For tangency: discriminant $=0$
Thus, $m^{2}-4=0$, so $m= \pm 2$
25. $f(x)=5 x^{2}+10$.

METHOD A:

A line passing through $\mathrm{Q}(1,10)$ has the form

$$
\begin{equation*}
y-10=m(x-1) \Rightarrow y=m x-m+10 \tag{1}
\end{equation*}
$$

At the point of contact: Equal functions: $\quad 5 x^{2}+10=m x-m+10$
Equal derivatives: $\quad 10 x=m$
We solve the system:
(1) and (2): $5 x^{2}+10=10 x^{2}-10 x+10 \Leftrightarrow 5 x^{2}-10 x=0 \Leftrightarrow 5 x(x-2)=0 \Leftrightarrow x=0$ or $x=2$

From (2): If $x=0, m=0$, if $x=2, m=20$
Therefore
If $m=0$ the tangent line is $y=10$
If $m=20$ the tangent line is $y=20 x-10$

METHOD B:

$f(x)=5 x^{2}+10, f^{\prime}(x)=10 x$.
At $x=a, y=5 a^{2}+10$ (that is at point $\left(a, 5 a^{2}+10\right)$

$$
m_{T}=10 a
$$

The general tangent line is $y-\left(5 a^{2}+10\right)=10 a(x-a) \Rightarrow y-5 a^{2}-10=10 a x-10 a^{2}$

$$
\Rightarrow y=10 a x-5 a^{2}+10
$$

The line passes through $\mathrm{Q}(1,10)$, so

$$
10 a-5 a^{2}+10=10 \Leftrightarrow 10 a-5 a^{2}=0 \Leftrightarrow 5 a(2-a)=0 \Leftrightarrow a=0 \text { or } a=2
$$

If $a=0$ the tangent line is $y=10$
If $a=2$ the tangent line is $y=20 x-10$
26. $f(x)=4-x^{2}$.

METHOD A:

A line passing through $(0,5)$ has the form $y-5=m(x-0) \Rightarrow y=m x+5$
At the point of contact: \quad Equal functions: $\quad 4-x^{2}=m x+5$ Equal derivatives: $\quad-2 x=m$
We solve the system:
(1) and (2): $4-x^{2}=-2 x^{2}+5 \Leftrightarrow x^{2}=1 \Leftrightarrow x= \pm 1$

From (2): If $x=1, m=-2$, if $x=-1, m=2$
Therefore If $m=-2$ the tangent line is $y=2 x+5$
If $m=2$ the tangent line is $y=-2 x+5$

METHOD B:

$f(x)=4-x^{2}, f^{\prime}(x)=-2 x$.
At $x=a, y=4-a^{2}$ (that is at point $\left(a, 4-a^{2}\right)$

$$
m_{T}=-2 a
$$

The general tangent line is $\quad y-\left(4-a^{2}\right)=-2 a(x-a) \Rightarrow y-4+a^{2}=-2 a x+2 a^{2}$

$$
\Rightarrow y=-2 a x+a^{2}+4
$$

The line passes through $(0,4)$, so
$a^{2}+4=5 \Leftrightarrow a^{2}=1 \Leftrightarrow a= \pm 1$
If $a=1$ the tangent line is $y=-2 x+5$
If $a=-1$ the tangent line is $y=2 x+5$

B. Exam style questions (LONG)

27. (a) (i) $p=1, q=5$ (or $p=5, q=1)$
(ii) $x=3$ (must be an equation)
(b) $y=(x-1)(x-5)=x^{2}-6 x+5=(x-3)^{2}-4 \quad(h=3, k=-4)$
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2(x-3)(=2 x-6)$
(d) When $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-6$
$y-5=-6(x-0) \quad(y=-6 x+5$ or equivalent $)$
28. (a) $\quad h=3 \quad k=2$
(b) $\quad f(x)=-(x-3)^{2}+2=-x^{2}+6 x-9+2=-x^{2}+6 x-7$
(c) $\quad f^{\prime}(x)=-2 x+6$
(d) (i) $\quad m_{T}=-2, m_{N}=\frac{1}{2}$, Normal: $y-1=\frac{1}{2}(x-4) \Rightarrow y=\frac{1}{2} x-1$
(ii) $\quad-x^{2}+6 x-7=\frac{1}{2} x-1 \Leftrightarrow 2 x^{2}-11 x+12=0 \Leftrightarrow x=1.5$ or $x=4$ so $x=1.5$
(OR by GDC $-x^{2}+6 x-7=\frac{1}{2} x-1 \Rightarrow x=1.5$
29. (a) (i) $f^{\prime}(x)=-x+2$
(ii) $f^{\prime}(0)=2$
(b) Gradient of tangent at y-intercept $\quad m_{T}=f^{\prime}(0)=2, \quad m_{N}=-\frac{1}{2}$

Therefore, equation of the normal is $y-2.5=-0.5(x-0) \Rightarrow y=-0.5 x+2.5$
(c) (i) $-0.5 x^{2}+2 x+2.5=-0.5 x+2.5 \Rightarrow x=0$ or $x=5$
(ii) Curve and normal intersect when $x=0$ or $x=5$

Other point is when $x=5 \Rightarrow y=-0.5(5)+2.5=0$ (so other point $(5,0)$
30. (a) (i) $p=-2 q=4$ (or $p=4, q=-2$)
(ii) $y=a(x+2)(x-4) \Leftrightarrow 8=a(6+2)(6-4) \Leftrightarrow 8=16 a \Leftrightarrow a=\frac{1}{2}$
(iii) $y=\frac{1}{2}(x+2)(x-4) \Rightarrow y=\frac{1}{2}\left(x^{2}-2 x-8\right) \Rightarrow y=\frac{1}{2} x^{2}-x-4$
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=x-1$

$$
x-1=7 \Leftrightarrow x=8, y=20(\mathrm{P} \text { is }(8,20))
$$

(c) (i) when $x=4, \mathrm{~m}_{\mathrm{T}}=4-1=3 \Rightarrow \mathrm{~m}_{\mathrm{N}}=-\frac{1}{3}$

$$
y-0=-\frac{1}{3}(x-4) \quad\left(y=-\frac{1}{3} x+\frac{4}{3}\right)
$$

(ii) $\frac{1}{2} x^{2}-x-4=-\frac{1}{3} x+\frac{4}{3} \Leftrightarrow x=-\frac{8}{3}$ or $x=4$
$x=-\frac{8}{3}(-2.67)$
31. (a) (i) $f(x)=\frac{2 x+1}{x-3}=2+\frac{7}{x-3} \quad$ OR $f(x)=\frac{2+\frac{1}{x}}{1-\frac{3}{x}}$

Therefore as $|x| \rightarrow \infty f(x) \rightarrow 2 \Rightarrow y=2$ is an asymptote
Note: inexact methods based on the ratio of the coefficients of x also accepted
(ii) Asymptote at $x=3$
(iii) $\quad P(3,2)$
(b) $f(x)=0 \Rightarrow x=-\frac{1}{2}\left(-\frac{1}{2}, 0\right)$
$x=0 \Rightarrow f(x)=-\frac{1}{3}\left(0,-\frac{1}{3}\right)$
(c)

(d) $f^{\prime}(x)=\frac{(x-3)(2)-(2 x+1)}{(x-3)^{2}}=\frac{-7}{(x-3)^{2}}$

Therefore slope when $x=4$ is -7
And $f(4)=9 \quad$ ie $S(4,9)$
Equation of tangent: $y-9=-7(x-4) \Rightarrow 7 x+y-37=0$
(e) at $T, \frac{-7}{(x-3)^{2}}=-7 \Rightarrow(x-3)^{2}=1 \Rightarrow x-3= \pm 1$
$\left.\begin{array}{l}x=4 \text { or } 2 \\ y=9 \text { or }-5\end{array}\right\} \begin{aligned} & S(4,9) \\ & T(2,-5)\end{aligned}$
(f) $\operatorname{Midpoint}[S T]=\left(\frac{4+2}{2}, \frac{9-5}{2}\right)=(3,2)=\operatorname{point} P$
32. (a) $f^{\prime}(x)=3 x^{2}-6 x-24$
(b) Tangents parallel to the x-axis mean maximum and minimum (see graph)

EITHER by GDC $\mathrm{P}(-2,29)$ and $\mathrm{Q}(4,-79)$
OR $f^{\prime}(x)=0 \Leftrightarrow 3 x^{2}-6 x-24=0 \Leftrightarrow x=-2$ or $x=4$
Coordinates are $\mathrm{P}(-2,29)$ and $\mathrm{Q}(4,-79)$
(b)

(i)
$(4,29)$
(ii) $(-2,-79)$
33. (a)

(b) $\quad x^{2}+\frac{1}{2} \ln x=0$ when $x=0.548217$. Therefore, the x-coordinate of P is $0.548 \ldots$
(c) The tangent at P to $y=x^{2}$ has equation $y=1.0964 x-0.30054$, and the tangent at P to $y=-\frac{1}{2} \ln x$ has equation $y=-0.91205 x+0.80054$.

Thus, the area of triangle $\mathrm{PQR}=\frac{1}{2}(0.30052+0.80054)(0.5482)=0.302(3$ s.f. $)$
(d) $y=x^{2} \Rightarrow$ when $x=a, \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 a$
$y=-\frac{1}{2} \ln x \Rightarrow$ when $x=a, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{2 a}(a>0)$
Now, (2a) $\left(-\frac{1}{2 a}\right)=-1$ for all $a>0$.
Therefore, the tangents to the curve at $x=a$ on each curve are always perpendicular.
34. (a) EITHER $A \sin \left(\frac{\pi}{2}\right)+B=3$ and $A \sin \left(\frac{3 \pi}{2}\right)+B=-1$
$\Leftrightarrow A+B=3,-A+B=-1$
$\Leftrightarrow A=2, B=1$
OR
Amplitude $=A=\frac{3-(-1)}{2}=\frac{4}{2}=2$
Midpoint value $=B=\frac{3+(-1)}{2}=\frac{2}{2}=1$
(b) $\quad f(x)=2 \sin \left(\frac{\pi}{2} x\right)+1$
$f^{\prime}(x)=\left(\frac{\pi}{2}\right) 2 \cos \left(\frac{\pi}{2} x\right)+0=\pi \cos \left(\frac{\pi}{2} x\right)$
(c) (i) $y=k-\pi x$ is a tangent $\Rightarrow-\pi=\pi \cos \left(\frac{\pi}{2} x\right)$

$$
\begin{aligned}
& \Rightarrow-1=\cos \left(\frac{\pi}{2} x\right) \\
& \Rightarrow \frac{\pi}{2} x=\pi \text { or } 3 \pi \text { or } \ldots \\
& \Rightarrow x=2 \text { or } 6 \ldots
\end{aligned}
$$

Since $0 \leq x \leq 5$, we take $x=2$, so the point is $(2,1)$
(ii) Tangent line is: $y=-\pi(x-2)+1$

$$
\begin{aligned}
& y=(2 \pi+1)-\pi x \\
& k=2 \pi+1
\end{aligned}
$$

(d) $\quad f(x)=2 \Rightarrow 2 \sin \left(\frac{\pi}{2} x\right)+1=2$

$$
\begin{aligned}
& \Rightarrow \sin \left(\frac{\pi}{2} x\right)=\frac{1}{2} \\
& \Rightarrow \frac{\pi}{2} x=\frac{\pi}{6} \text { or } \frac{5 \pi}{6} \text { or } \frac{13 \pi}{6} \\
& x=\frac{1}{3} \text { or } \frac{5}{3} \text { or } \frac{13}{3}
\end{aligned}
$$

35.

(a) (i)

(ii) $g(x)=\frac{\mathrm{e}^{x}}{\sqrt{x}}$

$$
\begin{aligned}
g^{\prime}(x) & =\frac{\mathrm{e}^{x} \sqrt{x}-\frac{\mathrm{e}^{x}}{2 \sqrt{x}}}{x} \\
& =\frac{(2 x-1) \mathrm{e}^{x}}{2 x \sqrt{x}}
\end{aligned}
$$

(iii) gradient is $-\frac{1}{g^{\prime}(x)}$

$$
=\frac{2 x \sqrt{x}}{(1-2 x) \mathrm{e}^{x}}
$$

(b) (i) $\frac{y-0}{x-1}=\frac{\mathrm{e}^{x}}{\sqrt{x}(x-1)}$
(ii) EITHER

$$
\begin{aligned}
\frac{\mathrm{e}^{x}}{\sqrt{x}(x-1)}= & \frac{2 x \sqrt{x}}{(1-2 x) \mathrm{e}^{x}} \\
x & =0.5454 \ldots
\end{aligned}
$$

OR

$$
D^{2}=(x-1)^{2}+y^{2}=(x-1)^{2}+\frac{\mathrm{e}^{2 x}}{x}
$$

$$
\frac{\mathrm{d} D^{2}}{\mathrm{~d} x^{2}}=2(x-1)+\frac{2 \mathrm{e}^{2 x} x-\mathrm{e}^{2 x}}{x^{2}}=0
$$

$$
x=0.5454 \ldots
$$

THEN
$\begin{aligned} \text { distance } & =\sqrt{(1-0.5454)^{2}+\left(\frac{\mathrm{e}^{0.454}}{\sqrt{0.5454}}\right)^{2}} \\ & =2.38\end{aligned}$

$$
=2.38
$$

