$f(x)$ Function Transformations

Lesson 2- November 27, 2019
Jacob Carroll
Reagan Lee
Lucas Pritchett

What do we know about a $f(x)$ graph?

The graph is linear

The graph has slope, which is rise/run

- Positive, Negative, Undefined, or Zero

They have x-intercepts and y intercepts

Graph is continuous and one-to-one

$a * f(x)$

- What did you notice about the graph based on slider movements?
- What function does a serve?
\bigcirc a affects the slope of the graph
O When a positive, we have a positive slope
* The greater the number, the steeper the lineWhen a is negative, we have a negative slope
* The lesser than number, the steeper the line
- Let's model this.

$$
\begin{aligned}
& \text { Let } a=-4 . \\
& =(-4) * f(x) \\
& =-4 f(x)
\end{aligned}
$$

We have a negative slope of -

f(bx)

- What did you notice about the graph based on slider movements?
- What function does a serve?
$\bigcirc b$ affects the slope of the graph
- When b is positive, we have a positive slope
* The greater the number, the steeper the line
- When b is negative, we have a negative slope
* The lesser than number, the steeper the line
- Let's model this.

$$
\begin{aligned}
& \text { Let } a=-4 . \\
& =(-4) * f(x) \\
& =-4 f(x)
\end{aligned}
$$

$$
\text { Let } a=4 \text {. }
$$

$$
=(4) * f(x)
$$

-We have a negative slope of -

$$
=4 f(x)
$$

-We have a positive slope of 4 .

$f(x-c)$

- What did you notice about the graph based on slider movements?
- What function does c serve?

O c shifts the graph

* When c is negative, the graph shifts to the left on the x -axis
* When c is positive, the graph shifts to the right on the x -axis
- Let's model this. Notice that the equation is $f(x-c)$, with a minus sign.

$$
\begin{aligned}
& \text { Let } \mathrm{c}=-4 \text {. } \\
& =\mathrm{f}(\mathrm{x}-(-4)) \\
& =\mathrm{f}(\mathrm{x}+4)
\end{aligned}
$$

-Notice the signs flip.

- Our graph is shifting 4 units to the right on the x-axis.

$$
\begin{aligned}
& \text { Let } \mathrm{c}=4 \text {. } \\
& =\mathrm{f}(\mathrm{x}-(4)) \\
& =\mathrm{f}(\mathrm{x}-4)
\end{aligned}
$$

-Notice the signs flip.

- Our graph is shifting 4 units to the left on the x-axis.

$f(x)+d$

- What did you notice about the graph based on slider movements?
- What function does d serve?d shifts the graph
* When dis negative, the graph shifts up on the y-axis

When dis positive, the graph shifts down on the y-axis

- Let's model this. Notice that the equation is $f(x)+d$, with a plus sign.

$$
\begin{aligned}
& \text { Let } d=-4 . \\
& =f(x)+(-4) \\
& =f(x)-4
\end{aligned}
$$

-Our graph is shifting down 4 units on the y-axis.

Let $d=4$.
$=f(\mathrm{x})+(4)$
$=f(x)+4$
-Our graph is shifting up 4 units on the y-axis.

Exit Tickets

- What were some similarities or differences you noticed in the four transformation functions to the $f(x)$ graph?

