

MATEMÁTICA - 9.º ANO

Ficha de trabalho – Função quadrática	Ano letivo:		
Nome:	N.º:	Turma:	

FUNÇÕES DO 2º GRAU

1. Funções de tipo $f(x)=ax^2$. Concavidade.

Acede ao GeoGebra Classic 5. Segue as orientações da professora e os seguintes passos

- Insere um seletor "a" a variar entre -5 e 5 de incremento 0.1.
- No menu entrada escreve a expressão $f(x)=ax^2$.
- Botão do lado direto de rato junto ao "seletor" faz "animar" .
- Analisa com atenção o comportamento do gráfico da função e completa:

a)	Qual o comportamento da parábola quando o parâmetro a assume valores positivos ou negativos?				
b)	O que referir quanto à abertura da parábola quando alteras o valor do parâmero a?				
c)	Escreve a equação da reta que divide a parábola em duas partes geometricamente iguais,				

ou seja, a equação do eixo de simetria e as coordenadas do vértice da parábola.

- 2. Funções de tipo f(x)=ax². Área do retângulo definido por um ponto móvel ao longo de f, pela origem do referencial e pelos pontos de interseção das retas perpendiculares a ox e oy que passam por A.
 - traça a reta perpendicular a ox que passa por A. Encontra o ponto de interseção dessa reta com o eixo ox, Ponto B;
 - traça a reta perpendicular a oy que passa por A. Encontra o ponto de interseção dessa reta com o eixo oy, Ponto C;
 - constrói o quadrilátero definido pelo ponto A, origem do referencial e os dois pontos que encontraste anteriormente.
 - no menu entrada define largura como sendo distância entre os pontos V(origem do referencial) e B;
 - no menu entrada define altura como a distância entre os pontos B e A.
 - no menu entrada define a área do retângulo. Àrea = comprimento vezes altura.

a) Coloca o seletor em 2, movimenta o ponto A e completa a tabela.

Coordenadas do ponto A								
х	-2	-1,5	-1	0	1	1,5	2	3
área do retângulo								
Efetua $\frac{y}{x^2}$								

b) Coloca o seletor em 3, movimenta o ponto A e completa a tabela.

Coordenadas do ponto A								
х	-2	-1,5	-1	0	1	1,5	2	3
área do retângulo								
Efetua $\frac{y}{x^2}$								

c) Como podes determinar o valor do parâmetro a partir das coordenadas de um ponto da função?

3. Considera as funções da família $y = ax^2$. Para cada uma das seguintes alíneas indica o sentido da concavidade da parábola, o eixo de simetria, o vértice e determina a expressão algébrica de cada uma das funções sabendo que passam no ponto:

٦1		' つ	л١
a)	ı A	2,	4)

b) B(1,5)

c) C(-1,3)

d) D(-2,-4)