Step 1: Open Geogebra and hide the axes with the \square button.
Step 2: Use the circle button to create circle c with center A and point B on the circle. (It does not matter where the points are, or what size your circle is.)

Step 3: Use the point button \bullet^{A} to make point C outside of the circle (anywhere).
Step 4: Use the tangent button to create 2 tangent lines from point C to the circle.
Step 5: Use the intersect button to create point D and E which intersect with the tangent line and the circle.

Step 6: Use the segment button \square to create a segment between C and D (this will be on top of the line already there.)

Step 7: Use the segment button to create a segment from C to E (again on top of the line already there.)

Step 8: Steps 6 and 7 created the segments h and i, look in the Algebra pane and check the lengths of these two segments.

What do you notice about their lengths? \qquad
Click and hold any of the points A, B, or C . What do you notice about segments h and i now?

Compare your results with the results of others near you. Your next conjecture could be:

Tangent segments to a circle from a point outside the circle are \qquad

