
Inhaltsverzeichnis

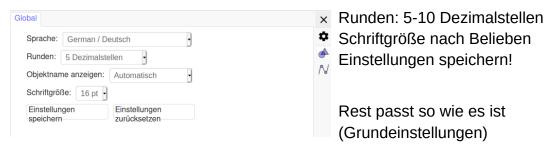
Allgemeine Einstellungen	3
Datei:	3
Ansicht:	3
1) Algebra	3
2) CAS	3
3) Grafik	3
4) Tabelle	3
5) Wahrscheinlichkeitsrechner	3
Einstellungen	4
Grundeinstellungen	4
Grafikeinstellungen	4
Algebra	4
Algebra & CAS kommunizieren miteinander!	5
Befehle, die in Algebra und CAS gleich funktionieren	5
Achtung!	5
1) Algebra & Grafik	6
Namen!	6
Einstellungen	6
Aus-/Einblenden	6
Algebra-Befehle	7
P = (x,y)	7
v = Vektor(<punkt>)</punkt>	7
v = Vektor(<anfangspunkt>, <endpunkt>)</endpunkt></anfangspunkt>	7
v = (x,y)	7
Funktionen	7
g = Gerade (<punkt>,<punkt>)</punkt></punkt>	8
k = Steigung(<gerade>)</gerade>	8
Nullstelle, Extremum, Wendepunkt (<polynom>) oder (<polynomfunktion>)</polynomfunktion></polynom>	8
2) CAS	9
CAS-Werkzeugleiste	9
= und ≈	9
x= und x≈	9
CAS-Befehle	10
:=	10
Löse(<gleichung>, <variable>)</variable></gleichung>	10

Geogebra quick guide	17.7.21	dieter.z@gmx.at
Multipliziere(<ausdruck>).</ausdruck>		10
Faktorisiere(<funktion>)</funktion>		10
Winkelfunktionen: sin, cos, t	an	11
Bogenmaß		11
3) Grafik		12
Grafik-Werkzeugleiste		12
Bewege		12
Punkt		12
Geraden, Strecken,		12
Koordinatensystem strecker	n (in x- oder y- Richtung)	12
4) Tabelle		13
Tabelle-Werkzeugleiste		13
Daten analysieren		13
Analyse einer Variablen:		13
Säulendiagramm		13
Boxplot		14
Säulendiagramm und Boxpl	ot	15
Analyse zweier Variablen:		16
Regressionsgerade (lineare	Regression)	16
5) Wahrscheinlichkeitsrechner		17
Binomialverteilung		17
Normalverteilung		18

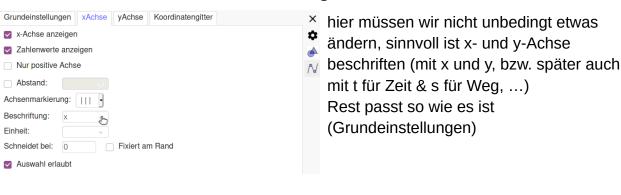
Allgemeine Einstellungen

links unten gibt es ein kleines Tastatursymbol für Sonderzeichen und alle Zeichen, die ihr gerade nicht auf eurer Tastatur findet!

Ansicht:

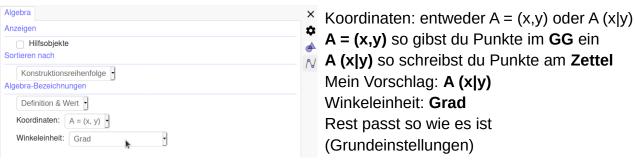

Nach Bedarf Häkchen setzen oder entfernen!

- 1) Algebra
- 2) CAS
- 3) Grafik
- 4) Tabelle
- 5) Wahrscheinlichkeitsrechner



Einstellungen

Grundeinstellungen


Grafikeinstellungen

und Koordinatengitter: Weites Gitter

Algebra №

Algebra & CAS kommunizieren miteinander!

Befehle die **in Algebra und CAS funktionieren**, werden automatisch übernommen $f(x)=x^2-3\cdot x+1$ in Algebra wird von CAS übernommen (Kontrolle: im CAS f(x) eingeben) $f(x):=x^2-3\cdot x+1$ in CAS wird von Algebra übernommen (wird automatisch eingefügt) $f(x):=a\cdot x^2+b\cdot x+c$ in CAS wird von Algebra **nicht** übernommen! (funktioniert in Algebra nicht)

Generell ist es sinnvoll, immer zu schauen, ob etwas funktioniert oder nicht. Mit f(x) <Enter> kann man sofort schauen, ob es in der anderen Ansicht auch definiert ist. Natürlich gilt alles auch für f'(x), h(t), K(x), ...

Befehle, die in Algebra und CAS gleich funktionieren

f'(x), f''(x) Ableitungsfunktion

Integral(<Funktion>, <Startwert>, <Endwert>) Bestimmtes Integral (Fläche)

Algebra zeichnet die Fläche auch im Grafikfenster ein!

Integral(<Funktion>) Unbestimmtes Integral (Stammfunktion)

besser im CAS

Achtung!

Das hat auch Nachteile:

wenn ich im CAS eine Funktion $f(x):=a \cdot x^2+b \cdot x+c$ definiere und dann a,b,c ausrechne, dann muss ich die fertige Funktion (z.B. $f(x)=0.5x^2-3x+2$) in Algebra und CAS anders nennen,

wenn ich sie zeichnen oder etwas berechnen will! \rightarrow f1(x)= 0,5x² - 3x +2

1) Algebra & Grafik

Algebra und Grafik verwenden wir immer gemeinsam.

Die Algebra-Ansicht hat genaugenommen keine Werkzeugleiste,

hier verwendet man Text-Befehle. Fast alle Befehle lauten genau so wie sie sollen.

Die Grafik-Werkzeugleiste können wir verwenden wenn wir den genauen Befehl vergessen haben.

Beispiel: wenn wir einen **Schnittpunk** finden wollen, können wir bei **Punkt** nachschauen, wie der Befehl lautet (= Schneide)

Namen!

Alles hat einen Namen, Punkte, Geraden, ... wir nennen alles in GG entweder entsprechend der Angabe, oder sinnvoll! Also immer **Name = Befehl** oder

Name: Gleichung (GG erkennt die Gleichung)

Und wir verwenden keinen Namen doppelt, und halten uns an die Mathematik-Regeln für Namen

(Punkte: große Buchstaben, alle Linien (auch Vektoren): kleine Buchstaben, ...) Deshalb verwenden wir am Besten auch fast immer die Algebra-Befehle statt der Grafik-Werkzeugleiste

: Einstellungen

Jedes Objekt (jede Zeile) hat rechts die 3 Punkte, mit denen man die Einstellungen für dieses Objekt ändern kann. Farbe, Größe, **Algebra**-Einstellungen (besonders wichtig für Geraden)

Aus-/Einblenden

Jedes Objekt (jede Zeile) hat links einen farbigen Punkt, mit denen man dieses Objekt aus- und einblenden kann.

Algebra-Befehle

$$P = (x,y)$$

So gibst du Punkte ein, GG schreibt dann (je nach Einstellung) P (x|y) oder P=(x,y)

v = Vektor(< Punkt>)

So gibst du einen (Orts-)Vektor $\binom{x}{y}$ ein, GG zeichnet den Vektor vom Koordinatenursprung zum Punkt

$$v = Vektor((2,3))$$

$$\rightarrow \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

v = Vektor(<Anfangspunkt>, <Endpunkt>)

So gibst du einen Vektor vom Punkt A zum Punkt E ein

$$v = Vektor((2,3),(4,2))$$
 oder, wenn du
$$- \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 die Punkte
$$vorher \ eingibst$$

$$v = Vektor((2,3),(4,2))$$

$$- (2 \mid 3)$$

$$- (2 \mid 3)$$

$$- (2 \mid 3)$$

$$- (4 \mid 2)$$

$$v = Vektor(A,B)$$

$$- \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$v = (x,y)$$

So kannst du einen (Orts-)Vektor $\begin{pmatrix} x \\ y \end{pmatrix}$ auch eingeben

GG zeichnet den Vektor vom Koordinatenursprung in der Grafik-Ansicht kann man den Vektor auch (mit dem Mauszeiger) verschieben

Funktionen

 $f(x)= \dots$ zeichnet die Funktionen f

g: y=2x-3 zeichnet die Gerade g mit dieser expliziten Form h: x-3y=6 zeichnet die Gerade h mit dieser allgemeinen Form

g = Gerade (<Punkt>,<Punkt>)

Entweder vorher definierte oder berechnete Punkte verwenden, oder für jeden Punkt die jeweiligen Koordinaten (x,y) eingeben

z.B. **g=Gerade (A,B)** zeichnet die Gerade g durch die beiden Punkte A & B wenn die weiter oben schon definiert sind. Das verwenden wir am öftesten.

h=Gerade ((1,2),(3,5)) zeichnet die Gerade h durch die beiden Punkte

k = Steigung(<Gerade>)

berechnet die Steigung und zeichnet ein Steigungsdreieck zur Geraden. Die Größe des Steigungsdreiecks kann über die Einstellungen verändert werden.

Nullstelle, Extremum, Wendepunkt (<Polynom>) oder (<Polynomfunktion>)

Berechnet die Punkte und zeichnet sie ein

Nicht vergessen, zuerst N=; E= bzw. W= eingeben, dann bekommen alle Punkte gleich die richtigen Namen $(N_1, N_2, ...)$

2) CAS

Im CAS immer alle Rechensymbole eingeben! z.B. 3·x² ... (nicht 3x²)

Wenn die Leiste nicht da ist, ins CAS Fenster Klicken! Für Befehle aus der Leiste immer vorher die Zeile(n) im CAS markieren Achte darauf, dass = immer markiert ist, und verwende \approx nur wenn du es brauchst.

= und ≈

Das sind keine aktiven Tasten, sondern Einstellungen (wie ein Schalter) Die Einstellung bleibt. Wenn man die andere Einstellung will, umschalten! Bei = werden Ergebnisse genau ($\frac{1}{4}$, π , Wurzeln) angegeben, bei \approx als gerundete Dezimalzahl.

Relevant bei allen Rechnungen mit < Enter > (Taschenrechner, Rechnung eintippen, Enter)

x= und $x\approx$

Löst **Gleichungen** (Term = Term)

Formt die Gleichung(en) um und löst eine oder mehrere markierte Gleichungen (Button für den Befehl Löse & Nlöse)

Funktioniert nur, wenn Anzahl der Gleichungen = Anzahl der Variablen wie = und ≈ entweder (Bruch/Wurzel) oder Dezimalzahl (Kommazahl) s.o. generell zuerst immer x= verwenden, und nur wenn das Ergebnis urkompliziert ausschaut, oder du gerade € etc. ausrechnen willst x≈

Zum Lösen mehrerer Gleichungen: alle Gleichungen markieren (shift-Taste gedrückt halten, und die weiteren Zeilen anklicken) und dann x= oder x≈ drücken

CAS-Befehle

:=

= neue Funktion definieren

Im Gegensatz zum Algebra-Fenster, müssen wir Funktionen im CAS mit := definieren Dann können wir die Funktion verwenden um Gleichungen aufzustellen, und GG übernimmt für uns auch das Einsetzen (nicht nur das Lösen) → Seite 5

Löse(<Gleichung>, <Variable>)

= Umformen

Diesen Befehl verwenden wir wenn mehrere Variablen vorkommen, und wir die Variablen nicht ausrechnen können/wollen, sondern eine der Variablen durch die anderen ausdrücken wollen

$$\begin{array}{ll} \textbf{3} & \text{L\"{o}se}\Big(\textbf{A} = \frac{\textbf{a} \cdot \textbf{b}}{2}, \textbf{a}\Big) \\ & \rightarrow & \left\{\textbf{a} = \textbf{2} \cdot \frac{\textbf{A}}{\textbf{b}}\right\} \end{array}$$

Wenn GG mehrere Ergebnisse ausgibt, z.B. +/- dann überlegen, welche Lösung Sinn macht!

Manchmal ist die Ausgabe unnötig kompliziert, aber sie ist richtig, manchmal hilft "Multipliziere" um den Ausdruck weniger kompliziert darzustellen

Multipliziere(< Ausdruck>)

<Ausdruck> = Term

Tut genau das was da steht, alles wird ausmultipliziert (z.B. Binomische Formeln, ...)

Multipliziere
$$\left(x(x-1)(x+2)^2\right)$$

$$\Rightarrow x^4 + 3x^3 - 4x$$

Faktorisiere(<Funktion>)

<Funktion> = Term

Macht genau das **Gegenteil von multipliziere**: Herausheben, Binomische Formeln "rückwärts"

```
2 Faktorisiere (x^4 + 3x^3 - 4x)

\rightarrow x (x - 1) (x + 2)^2
```

Winkelfunktionen: sin, cos, tan

GG rechnet mit Bogenmaß ($2\pi = 360^{\circ}$)

Wenn wir in Grad rechnen wollen, immer ° eingeben!

immer ° eingeben, auch wenn wir einen Winkel ausrechnen wollen (x°)
Wenn wir den Winkel in Grad berechnen wollen, zuerst auf x≈ und dann auf x= drücken
dann bekommen wir beide Lösungen (die wir am Einheitskreis gezeichnet haben)
x≈ und danach x=

$$\sin(x^{\circ}) = 0.5$$

 $\text{NL\"ose: } \{x = 30\}$
 $\sin(x^{\circ}) = 0.5$
 $\text{NL\"ose: } \{x = 30, x = 150\}$

Für Berechnungen in Dreiecken reicht eine Lösung (= der kleinere Winkel)

Bogenmaß

brauchen wir nur wenn wir den Graphen einer Winkelfunktion zeichnen ($\pi \approx 3,14$)

3) Grafik

Grafik-Werkzeugleiste R.↑ → → D © Q A N == +

Wenn die Leiste nicht da ist, ins Grafik Fenster Klicken!

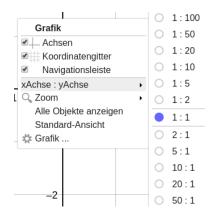
Achte darauf, dass immer markiert ist, nachdem du ein anderes Werkzeug verwendet hast, und nicht mehr brauchst.

Bewege R

Bewegt das ganze Koordinatensystem, oder Objekte im Koordinatensystem, verursacht selten ungewollte Effekte wenn man am Bildschirm irgendwo hinklickt!

Man kann auch den **Stift** auswählen, und freihändig malen (das brauchst du eher selten)

Punkt 🚹


Punkte im Koordinatensystem direkt mit dem Mauszeiger einzeichnen. Im Untermenü sind alle Befehle zum Thema Punkte (zum Nachschauen!)

Geraden, Strecken, ...

Geraden schnell einzeichnen (vor allem zum Üben)

Koordinatensystem strecken (in x- oder y- Richtung)

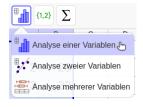
Irgendwo im Grafikfenster rechts klicken → xAchse : yAchse und Verhältnis wählen (wenns danach schlechter ist, andere Seite nehmen)

4) Tabelle

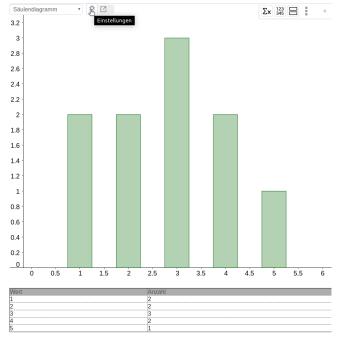
Tabelle-Werkzeugleiste 1 (1.2) \(\Sigma\)

Immer die Tabelle die wir auswerten wollen markieren mit shift + Cursor-Tasten

wir brauchen nur das zweite

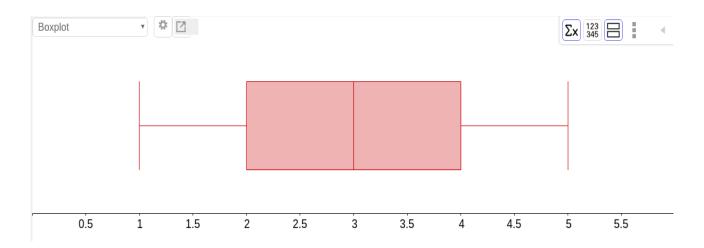

Symbol

ξ [1,2} Σ				
	Α	В		
1	1	20		
2	2	25		
3	3	32		
4	4	40		
5	5	45		
6				

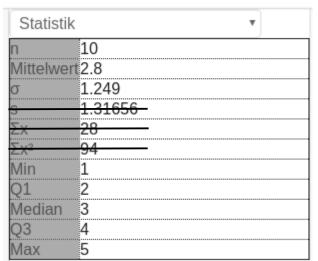

Daten analysieren

Analyse einer Variablen:

Säulendiagramm



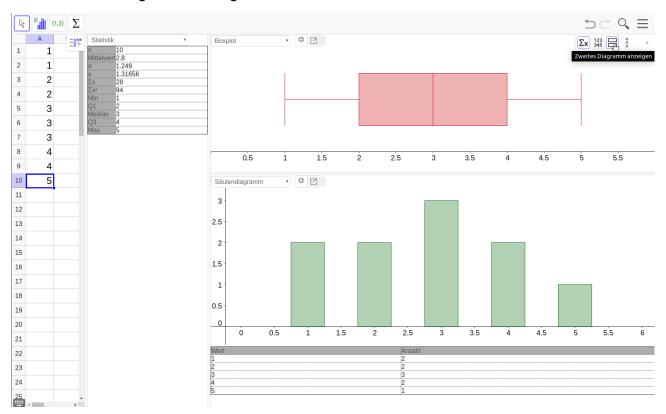
Die **Häufigkeitstabelle** unten bekommen wir, wenn wir bei den Einstellungen das Häkchen setzen



Mit **Statistik anzeigen** Σx bekommen wir alle Lage- & Streuungsparameter

Boxplot

Min, Q1, Med, Q3, Max sind im Boxplot von GG nicht beschriftet Mit **Statistik anzeigen** Σ_x bekommen wir alle Lage- & Streuungsparameter


(Die 3 Brauchen wir nicht)

Säulendiagramm und Boxplot

und Tabelle und alle Parameter in einer GG-Ansicht

☐ Zweites Diagramm anzeigen

Und im Säulendiagramm Häufigkeitstabelle anklicken

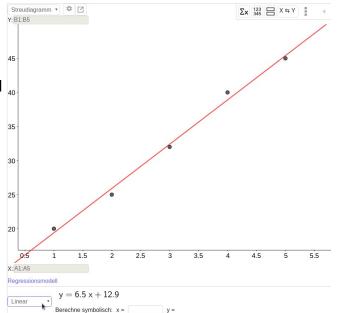
Analyse zweier Variablen:

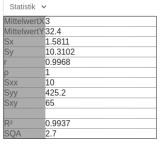
Regressionsgerade (lineare Regression)

links oben: Streudiagramm

das sind die Punkte aus der Tabelle

Regressionsmodell: linear


liefert die Regressionsgerade: $y = k \cdot x + d \Big|_{40}$


Berechne symbolisch:

berechnet die y-Werte zu x-Werten

Um x-Werte zu berechnen: einsetzen und CAS verwenden

Mit Statistik (Ex.) anzeigen bekommen wir die Tabelle mit dem Korrelationskoeffizienten r

← (FS: Korrelationskoeffizient nach Pearson)

Interpretation

je näher r bei 0 liegt umso weniger "gut" ist das Regressionsmodell

r = 1 Modell passt 100%ig (lineare Abhängigkeit, je größer x desto größer y)

r = -1 Modell passt 100%ig (lineare Abhängigkeit, je größer x desto kleiner y)

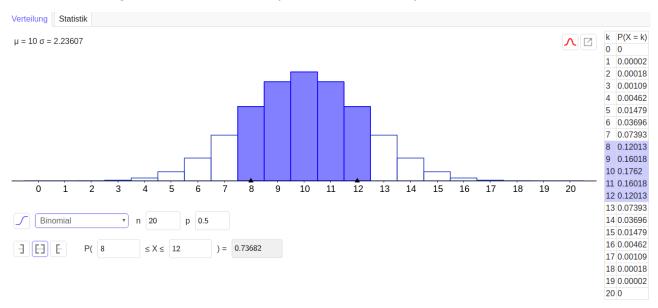
5) Wahrscheinlichkeitsrechner

Ansicht → Wahrscheinlichkeitsrechner anklicken, Grafik wegklicken → Verteilung wählen

wir brauchen entweder **Binomial**verteilung oder **Normal**verteilung

Binomialverteilung

Für P(X = k) n und p eingeben, k in der Tabelle (rechts) suchen, abschreiben


Für einen Bereich je nachdem ob nach links –] für $P(X \le k)$

nach rechts [- für $P(X \ge k)$

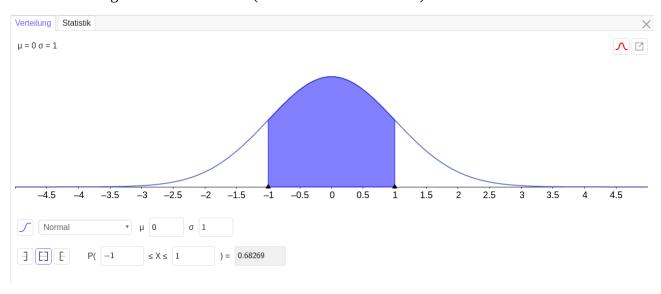
oder in der Mitte [-] für P(... \leq X \leq ...)

Erwartungswert μ und Standardabweichung σ stehen links oben!

GG malt das Ergebnis immer blau an (auch in der Tabelle)

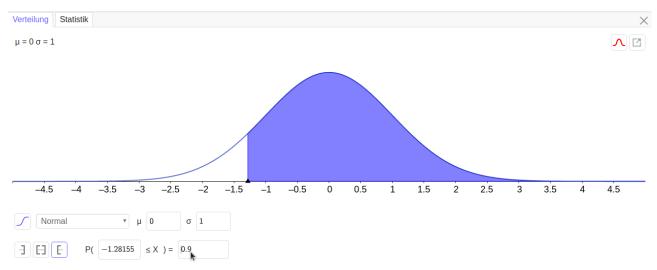
das ist kein Säulendiagramm!

Normalverteilung

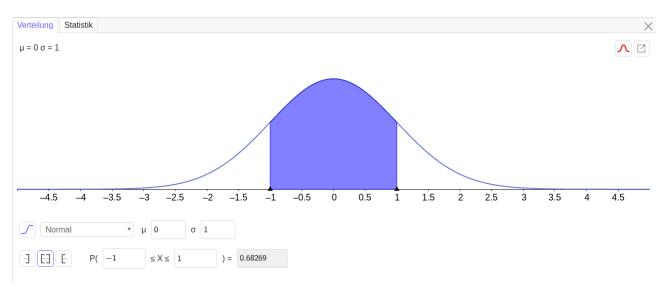

μ und σ eingeben P(X = k) = 0 (probier es aus!)

Für einen Bereich je nachdem ob nach links -] für $P(X \le k)$ oder $P(X \le k)$

nach rechts [- für $P(X \ge k)$ oder P(X > k)


oder in der Mitte [-] für P(... \leq X \leq ...) oder \leq

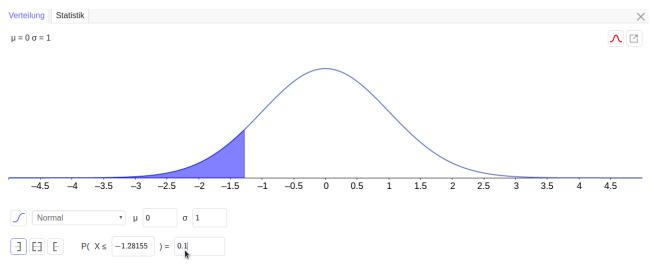
GG malt das Ergebnis immer blau an (zur Kontrolle anschauen!)



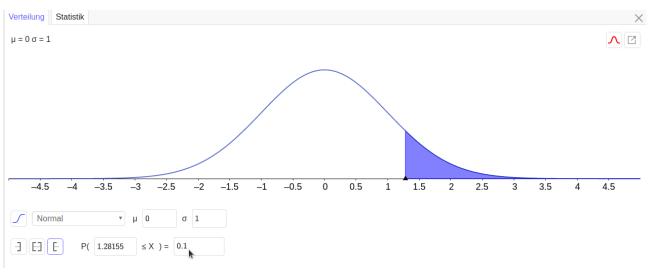
Wenn die Wahrscheinlichkeit (= Fläche) gegeben ist und die Grenzen gesucht sind, einfach die WK im Feld für die Wahrscheinlichkeit eintragen.

Funktioniert aber nur nach links –] oder nach rechts [–GG kann nicht 2 Werte gleichzeitig ausrechnen!

Wie finden wir die beiden Grenzen für ein symmetrisches Intervall um den Mittelwert?

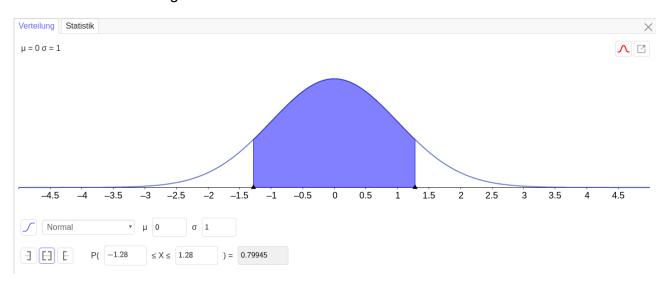


in der Mitte [-] können wir keine Wahrscheinlichkeit eintragen.


Wir sehen aber:

rechts und links bleibt gleich viel von den 100% übrig also nach links die Hälfte vom Rest und nach rechts die Hälfte vom Rest

ein symmetrisches Intervall mit 80% → links 10% und rechts 10%



Untere Grenze = -1,28

Obere Grenze = 1,28

Kontrolle: Grenzen eingeben und Wahrscheinlichkeit ablesen

