Vector Algebra Objective paper Level- II

your Name:

Srivastava Classes **Objective Test Paper(Vector-Algebra)**

Time : $1\frac{1}{2}$ hours Max:Marks:40

NOTE:

1. Attempt only twenty questions at a time.

2. All questions carry equal marks

3. Two marks for each correct answer and one minus for each incorrect answer.

LEVEL-I

Each question, in this part, has one or more than one correct answer(s). For each question write the letters a, b, c, d corresponding to the correct answer(s).

For every 10 Question there are 20 minutes

Notice: 2 Each correct answer awarded 3 marks. Time:

Each incorrect answer awarded -1 marks.

Accordingly

1 Angle between $\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 5\hat{k} & \overrightarrow{b} = \hat{i} + \hat{j} - \hat{k}$ is:

(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) 0 (d) None

2 If $\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k} & \overrightarrow{b} = \hat{i} - 3 \hat{j} - s \hat{k}$ are right angled then s is : \bigcirc (a) -5 \bigcirc (b) 5 \bigcirc (c) -15 \bigcirc (d) 15

3 If $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$ then angle between $\overrightarrow{a} \& \overrightarrow{b}$ is

 $C(a) \frac{\pi}{2}$ $C(b) \frac{\pi}{3}$ C(c) 0 C(d) None

4 If $\vec{a} = 6\hat{i} + 2\hat{j} + 3\hat{k} & \vec{b} = 3\hat{i} - 5\hat{j} - 2\hat{k}$ then Unit vector perpendicular to $\vec{a} & \vec{b}$ is:

C (a) $\frac{11\hat{i} + 21\hat{j} - 36\hat{k}}{\sqrt{1858}}$ C (b) $\frac{3\hat{i} - 24\hat{j} + 19\hat{k}}{\sqrt{946}}$ C (c) $\frac{19\hat{i} + 24\hat{j} - 3\hat{k}}{\sqrt{946}}$ C (d)

5 If $\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k} & \overrightarrow{b} = \hat{i} - 3 \hat{j} - 5 \hat{k}$ then $\overrightarrow{a} \times \overrightarrow{b}$ is

C (a) $8\hat{i} - 11 \hat{j} + 5 \hat{k}$ C (b) $8\hat{i} + 11 \hat{j} - 5 \hat{k}$ C (c) $8\hat{i} + 11 \hat{j} + 5 \hat{k}$

$$8\hat{i} - 11\hat{j} - 5\hat{k}$$

- **6** If θ is angle between $\overrightarrow{a} = \hat{i} + 3 \hat{j} + 2 \hat{k} \& \overrightarrow{b} = 2\hat{i} 4 \hat{j} + \hat{k}$ then $\sin \theta$ is \bullet (a) $\sqrt{\frac{151}{247}}$ \bullet (b) $\sqrt{\frac{247}{115}}$ \bullet (c) $\sqrt{\frac{125}{147}}$ \bullet (d) $\frac{1}{21}\sqrt{345}$

- 7 $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} + \overrightarrow{b})$ is equal to :

- 8 If $|\overrightarrow{a}| = 7$, $|\overrightarrow{b}| = 11 & |\overrightarrow{a} + \overrightarrow{b}| = 10\sqrt{3}$ then $|\overrightarrow{a} \overrightarrow{b}|$ is equal to:

- C (a) $10\sqrt{2}$ C (b) $2\sqrt{10}$ C (c) $\sqrt{20}$ C (d) None 9 For any Vector \overrightarrow{a} if written as $\overrightarrow{i} \times (\overrightarrow{a} \times \overrightarrow{i}) + \overrightarrow{j} \times (\overrightarrow{a} \times \overrightarrow{j}) + \overrightarrow{k} \times (\overrightarrow{a} \times \overrightarrow{k})$ which will be Equal to: C (a) $2\overrightarrow{a}$ C (b) 0 C (c) $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ C (d) None

- 10 If $\overrightarrow{u} = \overrightarrow{a} \overrightarrow{b}$, $\overrightarrow{v} = \overrightarrow{a} + \overrightarrow{b} \& |\overrightarrow{a}| = |\overrightarrow{b}| = 2$ and angle between $\overrightarrow{a} \& \overrightarrow{b}$ is 90° then
 - C (a) 6
- C (b) 8
- C (c) 10 C (d) None

Click to grade