Class 5
Sc. 3 Cylindrical Shells

- TEST 1 in 1 Week
(on Valentine's Day F)
- Review Session at Math Center

$$
2 / 13 / 24,3 p m-4: 30 p m
$$

Ex: Compute the volume of the solid stained by rotating $y=2 x^{2}-x^{3}$, for $0 \leq x \leq 2$, about the y-axis:

Try to compute the washer at height y :

- this is a hassle

differequires
differentiating

$$
\begin{aligned}
& \text { 4itrerentiativy } \\
& y=2 x^{2}-x^{3} \delta
\end{aligned}
$$

firdity area requires solving $y=2 x^{2}-x^{3}$ for x

Alternative Approach:
Appoximate the slid with "cylindrical shells" - subdivide the region under the function into rectangles (approximation)

volume of this "cylindical stell" is

$$
\begin{aligned}
V & =\pi x_{i+1}^{2} h-\pi x_{i}^{2} h \\
& =\pi h\left(x_{i+1}^{2}-x_{i}^{2}\right) \underbrace{\Delta x} \\
& =\pi h\left(x_{i+1}+x_{i}\right)\left(x_{i+1}-x_{i}\right) \\
& =2 \pi h \Delta x \frac{x_{i+1}+x_{i}}{2} \\
& \approx 2 \pi f\left(\frac{x_{i+1}+x_{i}}{2}\right) \cdot \Delta x \cdot \frac{x_{i+1}+x_{i}}{2}
\end{aligned}
$$

let $\Delta x \rightarrow 0$ (or let the number of partitions go to ∞)
This gives the volume of the solid as:

$$
\begin{aligned}
& \int_{0}^{2} 2 \pi \cdot x \cdot f(x) d x \\
= & \int_{0}^{2} 2 \pi x\left(2 x^{2}-x^{3}\right) d x=\cdots=\frac{16 \pi}{5}
\end{aligned}
$$

Geneal Formula
The volume of the solid obtained by rotating $f(x)$, with $0 \leq a \leq x \leq b$, about the y-axis, is

$$
\int_{a}^{b} 2 \pi x f(x) d x
$$

Revel To help remember the formic "unwrap the cylinder"

Circumference of the inner circle $2 \pi x$
volume of this is $2 \pi_{x} \cdot f(x) \cdot d x$
For you to read: p. 463
"Disks and Washers vs. Shells"
\$7.8: Improper Integrals
Ex: Consider the function $y=\frac{1}{x^{2}}$

Seams like it should be infinite!
Consider

$$
\int_{1}^{t} \frac{1}{x^{2}} d x=\left[\frac{-1}{x}\right]_{1}^{t}=\frac{-1}{t}+\frac{1}{1}=1-\frac{1}{t}
$$

50

Consider $\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty}\left(1-\frac{1}{t}\right)$

$$
=1-0=1
$$

counter intuitive!
Notice: Do the same thing with $\frac{1}{x}$

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=[\ln (x)]_{1}^{t} & =\ln (t)-\ln (1) \\
& =\ln (t)
\end{aligned}
$$

 $\lim _{\lim _{t \rightarrow \infty} \ln _{\text {diverges! }}(t)}$

$$
\begin{aligned}
& \begin{array}{l}
\text { In }(t) \text { is } \\
\text { supposed to ane iss }
\end{array} \\
& \begin{array}{c}
\text { be the inverse } \\
\text { of l } \\
\text { erse graphs }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { by reflés fie }
\end{aligned}
$$

Definition of an Improper Integral of Type I
(i) $\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$
(i) $\int_{-\infty}^{a} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{a} f(x) d x$
(iii) $\begin{aligned} & \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x \\ & \text { for any a in } \mathbb{R}\end{aligned}$

For (i) ad (ii) if that limit exists we say the integral converges. Otherwise we say it diverges. We say (iii) converges only when both of the improper integrals on the RHS converge.

Improper Integrals of Type II
(i) Say $f(x)$ is cont. on $(a, b]$ and discontinuous at a. Then we define

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

(ii) Say $f(x)$ is cont. on $[a, b)$ but disc. at b. Thew we define $\int_{a}^{b} f(x) d x=\lim _{t \rightarrow 5^{5}} \int_{a}^{t} f(x) d x$
(iii) Say f is disc. at c but cont. on $[a, c$) ad ($c, b]$ Then we define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Same terminology for convergence/
divergence divergence
Ex: Integrate $\frac{1}{\sqrt{x}}$ from 0 to 5

This is $\int_{0}^{5} \frac{1}{\sqrt{x}} d x=\lim _{t \rightarrow 0^{+}}^{5} \int_{t}^{5} x^{-\frac{1}{2}} d x$

$$
\begin{gathered}
=\lim _{t \rightarrow 0^{+}}\left[2 x^{\frac{1}{2}}\right]_{t}^{5}=2 \sqrt{5}-\overbrace{t \rightarrow 0^{+}}^{0} 2 \sqrt{t} \\
=2 \sqrt{5}
\end{gathered}
$$

General picture/

Why for Type I part (iii) we can't do

$$
\lim _{t \rightarrow \infty} \int_{-t}^{t} f(x) d x ?
$$

Ex: Say $f(x)=x$

$$
\lim _{t \rightarrow \infty} \int_{-t}^{t} x d x=0
$$

Ex: Say $f(x)=x+1$

$$
\begin{aligned}
& \text { But } \lim _{t \rightarrow \infty}^{t} \int_{-1}^{t} x+1 d x=\frac{1}{2} x^{2}+\left.x\right|_{-t} ^{t} \\
& =\lim _{1} \frac{1}{2} t^{2}+t-\frac{1}{2} t^{2}-(-t)=2 t
\end{aligned}
$$

This diverges!

