3D_Line \& Plane (Level -I)(BY:O.P.Srivastava)

3D_Line \& Plane Level- I

your Name :

1. For every 10 Question there are 20 minutes

Notice: 2 Each question require detail answer \& awarded 3 marks.
3 Each incorrect \& unclear answer awarded -2 marks.
Time: Accordingly

Each question require detail answer with fig.
 Test_Paper: 3D_Line \& Plane

1 Find the vector equation of line which is parrellel to the vector $2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and which passes through points $(5,-2,4)$.
2 A line passes through the point with position vector $2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}$ and is in the direction of $3 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$. Find the equation of line in vector form and scalar form.
3 Find the vector equation of line passing through $(1,-2,5)$ and parrallel to the line whose eq^{n} are $\frac{x+5}{3}=\frac{y-1}{8}=\frac{z+3}{9}$.
4 The cartisian equation of the line is $\frac{x-1}{3}=\frac{y+5}{7}=\frac{z-1}{9}$. Find a vector equation of the line parallel to this and passing through ($1,-7,-3$).
5 Find the vector equation of a line passing through the point with position vector $\hat{\imath}-2 \hat{\jmath}-3 \hat{k}$ and parallel to the line joining the points $\hat{\imath}-\hat{\jmath}+4 \hat{k} \& 2 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ also find cartisian equation.
6 Find the equation of line passing through $(2,-1,3)$ and is perpendicular to the line $\vec{r}=(\hat{\imath}+\hat{\jmath}-\hat{k})+\lambda(2 \hat{\imath}-2 \hat{\jmath}+\hat{k}) \&$ line $\vec{r}=(2 \hat{\imath}-\hat{\jmath}-3 \hat{k})+\mu(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$ Also find cartisian equation.
7 Find the angle between the following pair of lines and point of intersection :
(i) $\frac{x+4}{3}=\frac{y-1}{5}=\frac{z+3}{4} \& \frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$
(ii) $\vec{r}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(2 \hat{\imath}+3 \hat{\jmath}-3 \hat{k}) \& \frac{x+3}{-1}=\frac{y-5}{8}=\frac{z-1}{4}$
(iii) $\vec{r}=(\hat{\imath}+\hat{\jmath}-\hat{k})+\lambda(2 \hat{\imath}+\hat{\jmath}+2 \hat{k}) \& \vec{r}=(-\hat{\imath}+3 \hat{\jmath}+5 \hat{k})+\lambda(\hat{\imath}+3 \hat{\jmath}+2 \hat{k})$

8 (i) Show that the lines $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7} \& \frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$ intersect \& find the point of intersection.
(ii) Find the point of intersection. of the lines $\vec{r}=(\hat{\imath}+\hat{\jmath}-\hat{k})+\lambda(3 \hat{\imath}-\hat{\jmath})$ and $\vec{r}=(4 \hat{\imath}-\hat{k})$ $+\mu(2 \hat{\imath}+3 \hat{k}) \backslash$
9 Determine whether the following pair of lines intersect or not:
(i) $\vec{r}=(\hat{\imath}-\hat{\jmath})+\lambda(2 \hat{\imath}+\hat{k}) \& \vec{r}=(2 \hat{\imath}-\hat{\jmath})+\mu(\hat{\imath}+\hat{\jmath}-\hat{k})$
(ii) $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-0}{0} \& \frac{x+1}{5}=\frac{y-2}{1}=\frac{z-2}{0}$

10 Find the shortest distance between the following pair of lines :

11 Find the vector and cartisian equation of the plane passing through the point $\hat{\imath}+\hat{\jmath}-2 \hat{k}, 2 \hat{\imath}-\hat{\jmath}+\hat{k}$ $\& \hat{\imath}+2 \hat{\jmath}+\hat{k}$.
12 Find the vector and cartisian equation of the plane passing through the point $(-1,-1,2)$ \& perpendicular to the planes $3 x+2 y-3 z=1 \& 5 x-4 y+z=5$.
13 Find the vector and cartisian equation of the plane passing through the points $(1,-1,2) \&(2,-2,2)$ and which is perpendicular to the plane $6 x-2 y+2 z=9$
14 If the planes $\vec{r} \cdot(2 \hat{\imath}-\hat{\jmath}+\lambda \hat{k})=5 \& \vec{r} \cdot(3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k})=4$ are perpendicular ,then find the value of λ.
15 Find the vector and cartisian equation of the plane which is at a distance of 3 units from the origin \& has \hat{k} as the unit normal to it.
16 Find the vector and cartisian equation of the plane passing through the point ($1,2,1$) and perpendicular to the line joining the points $(1,4,2) \&(2,3,5)$. Find perpendicular distance of this plane from origin.
17 Write the normal form of the equation of the plane $2 x-3 y+6 z-14=0 \&$ also find its vector form.
18 Find the equation of a plane which is at a distance $3 \sqrt{3}$ units from the origin and the normal to which is equally inclined with the co-ordinates axes.
19 Find the angle between the planes :
(i) $\vec{r} \cdot(2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k})=1 \& \vec{r} \cdot(-\hat{\imath}+\hat{\jmath})=4$
(ii) $\vec{r} \cdot(2 \hat{\imath}-\hat{\jmath}+2 \hat{k})=6 \& \vec{r} \cdot(3 \hat{\imath}+6 \hat{\jmath}-2 \hat{k})=9$
(iii) $2 x-y+z=4 \& x+y+2 z=3$
(iv) $x+y-2 z=3 \& 2 x-2 y+z=5$

20 Show that the following planes are right angle :
(i) $\vec{r} \cdot(2 \hat{\imath}-\hat{\jmath}+\hat{k})=5 \& \vec{r} \cdot(-\hat{\imath}-\hat{\jmath}+\hat{k})=3$
(ii) $x-2 y+4 z=10 \& 18 x+17 y+4 z=49$

21 Find the vector and cartisian equation of the plane passing through the point $\hat{\imath}-\hat{\jmath}-3 \hat{k}$, $2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k} \& \hat{\imath}+2 \hat{\jmath}-2 \hat{k}$.
22 Find the vector and cartisian equation of the plane passing through the point $(-3,-2,4) \&$ perpendicular to the planes $3 x+2 y-3 z=1 \& 5 x-4 y+z=5$.
23 Find the vector and cartisian equation of the plane passing through the points $(1,-1,2) \&(3,-4,5)$ and which is perpendicular to the plane $3 x-2 y+4 z=9$
24 If the planes $\vec{r} \cdot(2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k})=5 \& \vec{r} \cdot(3 \hat{\imath}+\lambda \hat{\jmath}+2 \hat{k})=4$ are perpendicular ,then find the value of λ.
25 Find the vector and cartisian equation of the plane which is at a distance of 8 units from the origin $\&$ has $\hat{\jmath}$ as the unit normal to it.
26 Find the vector and cartisian equation of the plane passing through the point $(-1,3,1)$ and perpendicular to the line joining the points $(-2,3,4) \&(2,-3,1)$. Find perpendicular distance of this plane from origin.
27 Write the normal form of the equation of the plane $2 x+3 y+6 z-7=0 \&$ also find its vector form.

28 Find the equation of a plane which is at a distance $2 \sqrt{3}$ units from the origin and the normal to which is equally inclined with the co-ordinates axes.
Find the angle between the planes :
29 (i) $\vec{r} .(2 \hat{\imath}-\hat{\jmath}+4 \hat{k})=1 \& \vec{r} \cdot(\hat{\imath}+3 \hat{\jmath}-4 \hat{k})=4$ (ii) $\vec{r} \cdot(2 \hat{\imath}+6 \hat{\jmath}-3 \hat{k})=6 \&$ $\vec{r} \cdot(5 \hat{\imath}-3 \hat{\jmath}-8 \hat{k})=9$ (iii) $2 x-y+3 z=1 \& x+y-3 z=12$ (iv) $x+y-2 z=3 \&$ $3 x-2 y+2 z=5$
Show that the following planes are right angle : (i) $\vec{r} \cdot(2 \hat{\imath}-\hat{\jmath}+\hat{k})=5 \& \vec{r} \cdot(-\hat{\imath}-\hat{\jmath}+\hat{k})=3$ (ii) $x-2 y+4 z=10 \& 18 x+17 y+4 z=49$

