

Bom, assim construímos duas retas perpendiculares, note que se quisermos fazê-la como no caso das paralelas, (perpendicular passando por um ponto dado), é só seguir os passos dados lá.

ISBN N° 978-85-8196-036-4

Mediana – Baricentro

A mediana de um triângulo é o segmento que une um vértice ao ponto médio do lado oposto.

Todo triângulo possui três medianas, uma relativa a cada lado.

No Geogebra vamos construir as medianas de um ∆ABC. Para isso iniciamos a construção pelo triângulo.

Com o triângulo construído temos que encontrar o ponto médio de cada segmento. Para isso podemos trabalhar com circunferências. Primeiramente usaremos a ferramenta "Circunferência definida pelo centro e um de seus pontos" e depois a ferramenta "Círculo dados centro e raio" onde usaremos a medida da circunferência anterior e assim garantir que elas tenham o mesmo tamanho. Vejamos a construção:

Construímos a circunferência "d" com centro em "B".

Com a ferramenta "Segmento definido por dois pontos" construímos o segmento BD nomeado "e".

Selecionamos a ferramenta "Círculo dados centro e raio" e dentro da janela que abre ao clicarmos no ponto "A" definimos o raio "e" e damos "Ok".

Desta forma fica garantido que as circunferências "d" e "f" tenham o mesmo raio.

Com a ferramenta "Interseção de dois objetos" marcamos os pontos de interseção entre as duas circunferências clicando nas duas circunferências, obteremos então os pontos "E" e "F".

Novamente com a ferramenta "Segmento definido por dois pontos" marcamos o segmento EF e sua interseção com o segmento AB.

Finalmente obtemos o ponto "G" que é o ponto médio do segmento AB.

Na janela algébrica ocultamos objetos ficando apenas com o triângulo e o ponto "G".

O mesmo processo deve ser feito nos segmentos AC e BC.

Pronto, já temos o ponto médio de cada segmento. Agora o que falta é marcar os segmentos que vão dos vértices aos pontos médios dos segmentos opostos a cada vértice.

ISBN N° 978-85-8196-036-4

🕼 GeoGebra			_ 3 🛛
Arquivo Editar Exibi: Opções Ferramen	tas Janela Ajuda		
) () (~	Linterseção de Dols Objetos Selecione dois objetos ou clique diretamente na interseção	<u>~</u>
Dipetos Livres ×			
= (2.48, 5.56)			
		А	
··· O D=(-1.86, 4.12)		*	
··· O H = (6.8, 6.78)			
○ L = (2.02, -3.44) Objective Demonstrational Section 2018			
O E = (2.34, 0./5)			
O F - (-2.12, 4.13)			
···· 🥥 G – (0.11, 2.44)			
$\cdots \bigcirc 1 = (6.5, 3.56)$			
- G = (3, 1, 1) - G = (4, 75, 2, 33)		_G /a c	
O M - (2.43, 1.31)		λ $ \lambda$	
··· O N = (2.33, -2.89)			
···· ② O = (2.38, 0.79)			
a = 7.84 a b = 9.28			
@ c = /.9			
···· O d: (x + 2.26) ² + (y + 0.68) ² - 23.2			
···· O e - 4.82	/		
$\cdots \bigcirc 1: (X - 2.48)^{-1} + (Y - 5.56)^{-1} = 23.2$ $\cdots \bigcirc 0 = 5.6$	D		
O h: (x - 2.48) ² + (y - 5.56) ² - 20.15	•		
···· O i - 4.49		b	
···· O] = 4.27			
(1 - 5.09)			
···· O m = 4.19			
🥥 n = 6.35			
···· ○ p: (x + 2.26) ² + (y + 0.68) ² - 25.94			
\bigcirc q: (x · 7.02) ² · (y · 0.9) ² - 25.94			
🕡 =ntrada:		🖌 🔽 α 🔽 Comando	×
			PT OR DUCT
Modiana Microsoft	Geocebra		11 V S 11:35

Temos então as três medianas do triângulo.

Essas três medianas se intersectam num mesmo ponto denominado *baricentro*. Com a ferramenta "Interseção de dois objetos" clico em duas das medianas e obtenho o baricentro "Q".

O baricentro divide cada mediana em duas partes tais que a parte que contém o vértice é o dobro da outra. Com a ferramenta "Distância, comprimento ou perímetro" podemos ver esta condição.

Assim podemos ver que os segmentos AO, BK e CG são as medianas do \triangle ABC e que o ponto P é o baricentro do triângulo sendo ele também o centro de massa do \triangle ABC.

ISBN N° 978-85-8196-036-4

Podemos também fazer esta construção usando as ferramentas de construção direta. Iniciaremos a construção pelo triângulo usando a ferramenta "Polígono".

Com o triângulo construído, marcamos o ponto médio de cada lado do triângulo usando a ferramenta "Ponto médio ou centro" clicando em cada lado.

Com os pontos médios marcados podemos construir as medianas com a ferramenta "Segmento definido por dois pontos" usando os pontos dos vértices, ligando-os ao ponto médio do seu lado oposto.

ISBN N° 978-85-8196-036-4

Com a ferramenta "Interseção entre dois objetos" clicamos em duas das medianas.

🕼 GeoGebra					_ @ 🛛
Arquivo Editer Exipir Opções Ferremen	as Janela Ajuda				
] () 4	<u>₽</u>	Interseção de Dois Objetos Gele¢ione dois objetos ou cliqu	e diretamente na intersação	<u> </u>
C Objetos Livres × → A → (1.02,4.6) → R → (-2.16,-1.08) → C = (8.02,-1.98) Objetos Daryundentes → D = (0.43, 1.76) → E = (5.52, 1.31) → E → (2.93,-1.53) → G → (2.94,-1.53) → G		c p			
😢 Entrada:			~	M n M Chimaron	¥
👍 Iniciar 📄 👜 Mediana - Mcrosoft	🔁 Ger Gehra			PT	🏷 🔀 🕘 00:57

Assim, teremos o ponto "G" que é o baricentro do triângulo.

