SEMESTER B REVIEW: EQUATIONS

HEAT

$\qquad 1 Q=m c \Delta T$	$Q= \pm m h_{\text {fusion }} \quad Q= \pm m h_{\text {vaporization }}$	
specific heat of liquid water	4186	joules per kilogram per degree Celsius (or K)
specific heat of ice	2090	joules per kilogram per degree Celsius (or K)
heat of fusion of water	3.35E05	joules per kilogram
heat of vaporization of water	2.26 E 06	joules per kilogram

Change-of-phase

For these problems, work across this graph from the starting point to the end point, and account for the heat energy Q required at each phase of the graph.

For regions $(a \rightarrow b),(c \rightarrow d)$, and $(e \rightarrow)$, you will need the $Q=m c \Delta T$ version, while for $(\mathrm{b} \rightarrow \mathrm{c})$ and $(\mathrm{d} \rightarrow \mathrm{e})$, use the appropriate $Q=m h$ version.

Be aware of the sign of Q, also, in each region; heat energy may need to be added, or removed. Add up the total Q across the entire change range.

$$
T_{f}=\frac{\sum_{i=1}^{n} m_{i} c_{i} T_{i}}{\sum_{i=1}^{n} m_{i} c_{i}}
$$

general equation for final temperature for n objects

Two volumes of the same material (e.g., water)

Two masses of the same material

Two masses of different materials

$$
T_{f}=\frac{V_{1} T_{1}+V_{2} T_{2}}{V_{1}+V_{2}}
$$

$$
T_{f}=\frac{m_{1} T_{1}+m_{2} T_{2}}{m_{1}+m_{2}}
$$

$$
T_{f}=\frac{m_{1} c_{1} T_{1}+m_{2} c_{2} T_{2}}{m_{1} c_{1}+m_{2} c_{2}}
$$

ELECTRICITY AND MAGNETISM

Electrostatics $\quad \mathrm{k}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2} \quad \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
$F_{E}=k \frac{\left(\pm q_{1}\right)\left(\pm q_{2}\right)}{r^{2}}$
$E \equiv k \frac{ \pm q_{1}}{r^{2}}=\frac{F_{E}}{+q_{2}}$
$P E=k \frac{\left(\pm q_{1}\right)\left(\pm q_{2}\right)}{r}=F_{E} r$

Potential difference

$V \equiv \frac{P E}{q_{2}}=k \frac{ \pm q_{1}}{r} \quad \Delta V=\frac{\Delta P E}{q}=\frac{W}{q} \quad \Delta V=E \Delta d \quad \Delta P E=q E \Delta d=F_{E} \Delta d=W$

Current, Ohm's Law, Power, Energy

$I \approx \frac{\Delta q}{\Delta t}$
$V=I R$
$P=I V=\frac{V^{2}}{R}=I^{2} R$
Δ energy $=P \Delta t \quad$ (constant P only $)$

Basic DC circuit analysis (single voltage source)

$$
\begin{gathered}
R_{\text {eff }}=R_{\text {series }}+\sum R_{\text {parallel }} \quad R_{\text {series }}=\sum_{i=1}^{n} R_{i} \quad R_{\text {parallel }}=\frac{1}{\sum_{j=1}^{m} \frac{1}{R_{j}}}=\left(R_{1}^{-1}+R_{2}^{-1}+R_{3}^{-1}+\cdots+R_{m}^{-1}\right)^{-1} \\
R_{\text {parallel }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \mathrm{~m}=2 \text { only } \quad R_{\text {parallel }}=\frac{R_{\text {equal }}}{m} \text { all m equal } \\
I_{\text {total }}=\frac{V}{R_{e f f}} \\
P_{\text {total }}=I_{\text {total }} V=\frac{V^{2}}{R_{e f f}} \quad \Delta V=I_{\text {total }} R \\
I_{j}=I_{\text {total }} \frac{R_{\text {parallel }}}{R_{j}} \quad P_{j}=\frac{\left(I_{\text {total }} R_{\text {parallel }}\right)^{2}}{R_{j}} \\
I_{i}=I_{\text {total }} \\
\text { current, power in } j-t h \text { parallel resistor }
\end{gathered}
$$

Magnetic force

$$
\begin{gathered}
F_{\text {magnetic, charge }}=q v B \sin (\theta) \quad F_{\text {magnetic, wire }}=L I B \sin (\theta) \\
\text { assume } \theta \text { is } 90 \text { degrees unless otherwise specified }
\end{gathered}
$$

Transformers

$$
\frac{N_{p}}{N_{s}}=\frac{V_{p}}{V_{s}} \quad(V I)_{\text {in }}=(V I)_{\text {out }} \quad P_{\text {in }}=P_{\text {out }}
$$

$v=\lambda f$
speed of sound in air $\sim 340 \mathrm{~m} / \mathrm{s}$
speed of light (c) in vacuum $=3.00 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$

REFRACTION / OPTICS

INDEX OF REFRACTION

$$
n_{\text {medium }} \equiv \frac{c_{\text {vacuum }}}{c_{\text {medium }}} \geq 1
$$

SNELL'S LAW

$$
n_{i} \sin \left(\theta_{i}\right)=n_{r} \sin \left(\theta_{r}\right)
$$

CRITICAL ANGLE

$$
\theta_{\text {critical }}=\sin ^{-1}\left(\frac{n_{r}}{n_{i}}\right)
$$

MIRROR / LENS (PARAXIAL ASSUMPTION)

$$
\frac{1}{s_{\text {object }}}+\frac{1}{s_{\text {image }}}=\frac{1}{f} \Rightarrow s_{\text {image }}=\frac{f s_{\text {object }}}{s_{\text {object }}-f}=\frac{f}{1-\frac{f}{s_{\text {object }}}}
$$

MAGNIFICATION

$$
m=-\frac{s_{\text {image }}}{s_{\text {object }}}=\frac{f}{f-s_{\text {object }}}=\frac{1}{1-\frac{s_{\text {object }}}{f}}
$$

FOCAL LENGTH

$$
f_{\text {mirror }}=\frac{R}{2} \quad \frac{1}{f_{\text {lens }}}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]
$$

