1. Label the sides of the triangle.

- a. Which angle is the right angle? Which side is the hypotenuse? How did you decide?
- b. For $\angle A$, which side is
 - i. Opposite?
 - ii. Adjacent?
 - iii. Hypotenuse?

How did you decide?

- c. For $\angle C$, which side is
 - i. Opposite?
 - ii. Adjacent?
 - iii. Hypotenuse?

How did you decide?

d.
$$sin(A) = \frac{?}{?}$$
 $cos(A) = \frac{?}{?}$ $tan(A) = \frac{?}{?}$

e. $\sin(C) = \frac{?}{?}$ $\cos(C) = \frac{?}{?}$ $\tan(C) = \frac{?}{?}$

Make a hypothesis:

f. What do you notice about the trigonometric ratios for $\angle A$ and $\angle C$? Do you think it will always hold true? Why or why not?

Gather Data and Analyze Patterns

- 2. Open Geogebra and the file "Trig_Demo.ggb."
 - a. For $\angle A$, which side is:
 - i. Opposite?
 - ii. Adjacent?
 - iii. Hypotenuse?
 - b. For $\angle C$, which side is:
 - i. Opposite?
 - ii. Adjacent?
 - iii. Hypotenuse?
 - c. Is the hypotenuse for $\angle A$ the same as for $\angle C$? Why or why not?
- 3. Move the slider a1 to an angle measure of your choice.
- 4. Keeping m∠A constant, move either Point A or B around to get three different sets of measurements.
 - a. Record your data in the chart.

m∠A	m∠C	AB	BC	AC	AB BC	$\frac{AB}{AC}$	$\frac{BC}{AC}$

- b. What happens to the lengths of the triangle sides as either Points A or B move?
- c. As either Points A or B move, what happens to the ratios $\frac{AB}{BC}$? $\frac{AB}{AC}$? $\frac{BC}{AC}$?
- d. What do you think will (i) stay the same and (ii)be different if you change the angle measures? Explain your rationale.

e. Move the slider to a different angle measure, then keep m∠A constant on the new measure. Record the measures in the table below.

m∠A	m∠C	AB	BC	AC	AB BC	$\frac{AB}{AC}$	$\frac{BC}{AC}$

- f. Did your hypothesis from part d hold true for your new angle measure? Why or why not? Revise your hypothesis as needed.
- g. The table in Part h organizes the same information slightly differently than the charts we've used in Parts a and e. What are the similarities and differences? Explain your reasoning.
- h. Record data for at least 5 more trials. Be sure to hold $m \angle A$ constant or vary its value as needed to test your hypothesis.

m∠A	m∠C	$m \angle A + m \angle C$	Sin(A)	Cos(A)	Tan(A)	Sin(C)	Cos(C)	Tan(C)

Reflection

- 5. Did your hypothesis hold true? Why or why not?
- 6. What conclusions can you draw about the trigonometric ratios for a particular angle?
- 7. Why do you think trigonometric ratios are helpful?