1. Label the sides of the triangle.

a. Which angle is the right angle? Which side is the hypotenuse? How did you decide?
b. For $\angle \mathrm{A}$, which side is
i. Opposite?
ii. Adjacent?
iii. Hypotenuse?

How did you decide?
c. For $\angle \mathrm{C}$, which side is
i. Opposite?
ii. Adjacent?
iii. Hypotenuse?

How did you decide?
d. $\sin (A)=\frac{?}{?}$
$\cos (A)=\frac{?}{?}$
$\tan (A)=\frac{?}{?}$
e. $\quad \sin (C)=\frac{?}{?}$
$\cos (C)=\frac{?}{?}$
$\tan (C)=\frac{?}{?}$
Make a hypothesis:
f. What do you notice about the trigonometric ratios for $\angle \mathrm{A}$ and $\angle \mathrm{C}$? Do you think it will always hold true? Why or why not?

Gather Data and Analyze Patterns

2. Open Geogebra and the file "Trig_Demo.ggb."
a. For $\angle \mathrm{A}$, which side is:
i. Opposite?
ii. Adjacent?
iii. Hypotenuse?
b. For $\angle \mathrm{C}$, which side is:
i. Opposite?
ii. Adjacent?
iii. Hypotenuse?
c. Is the hypotenuse for $\angle \mathrm{A}$ the same as for $\angle \mathrm{C}$? Why or why not?
3. Move the slider a1 to an angle measure of your choice.
4. Keeping $\mathrm{m} \angle \mathrm{A}$ constant, move either Point A or B around to get three different sets of measurements.
a. Record your data in the chart.

$\mathbf{m} \angle \mathbf{A}$	$\mathbf{m} \angle \mathbf{C}$	$\mathbf{A B}$	$\mathbf{B C}$	$\mathbf{A C}$	$\frac{\mathbf{A B}}{\mathbf{B C}}$	$\frac{\mathbf{A B}}{\mathbf{A C}}$	$\frac{\mathbf{B C}}{\mathbf{A C}}$

b. What happens to the lengths of the triangle sides as either Points A or B move?
c. As either Points A or B move, what happens to the ratios $\frac{\mathrm{AB}}{\mathrm{BC}} ? \frac{\mathrm{AB}}{\mathrm{AC}} ? \frac{\mathrm{BC}}{\mathrm{AC}}$?
d. What do you think will (i) stay the same and (ii)be different if you change the angle measures? Explain your rationale.
e. Move the slider to a different angle measure, then keep $\mathrm{m} \angle \mathrm{A}$ constant on the new measure. Record the measures in the table below.

$\mathbf{m} \angle \mathbf{A}$	$\mathbf{m} \angle \mathbf{C}$	$\mathbf{A B}$	$\mathbf{B C}$	$\mathbf{A C}$	$\frac{\mathbf{A B}}{\mathbf{B C}}$	$\frac{\mathbf{A B}}{\mathbf{A C}}$	$\frac{\mathbf{B C}}{\mathbf{A C}}$

f. Did your hypothesis from part d hold true for your new angle measure? Why or why not? Revise your hypothesis as needed.
g. The table in Part h organizes the same information slightly differently than the charts we've used in Parts a and e. What are the similarities and differences? Explain your reasoning.
h. Record data for at least 5 more trials. Be sure to hold $\mathrm{m} \angle \mathrm{A}$ constant or vary its value as needed to test your hypothesis.

$\mathrm{m} \angle \mathrm{A}$	$\mathrm{m} \angle \mathrm{C}$	$\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{C}$	$\operatorname{Sin}(\mathrm{A})$	$\operatorname{Cos}(\mathrm{A})$	$\operatorname{Tan}(\mathrm{A})$	$\operatorname{Sin}(\mathrm{C})$	$\operatorname{Cos}(\mathrm{C})$	$\operatorname{Tan}(\mathrm{C})$

Reflection

5. Did your hypothesis hold true? Why or why not?
6. What conclusions can you draw about the trigonometric ratios for a particular angle?
7. Why do you think trigonometric ratios are helpful?
