


## Entdecken, Erforschen, Erkennen.



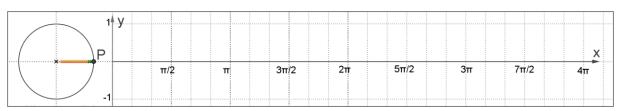
https://www.geogebra.org/m/tj3jr8q7#material/ye3d6eyk

## <u>Sinus & Co – Sinusgraph entdecken – Entdeckerblatt 7</u>



Der Punkt P (das "Bleistift-Ende") startet wie gewohnt und wandert entgegen dem Uhrzeigersinn auf dem Einheitskreis. Öffne die Aktivität Sinusgraph entdecken und schaue dir die Animation der Pendelbewegung des Bleistiftschattens an. Die beim Hin- und Herpendeln auftretenden Sinuswerte werden nun für eine volle Kreisumrundung in 30°-Schritten (bzw.  $\frac{\pi}{6}$ ) als Funktionswerte in ein Koordinatensystem übertragen.

1. Gib den zugehörigen Sinuswert für jeden Schritt auf zwei Dezimalen gerundet ein:




Bei korrekter Eingabe erscheint ein grüner Haken und die Schaltfläche für den nächsten Schritt. Trage die Werte auf 2 Dezimalen gerundet fortlaufend in die folgende Tabelle ein:

| Drehwinkel α =<br>(im Gradmaß)           | 0° | 30°              | 45° | 60°              | 90°              | 120°             | 135° | 150°             | 180° |
|------------------------------------------|----|------------------|-----|------------------|------------------|------------------|------|------------------|------|
| Bogenmaß b = (als Vielfaches von $\pi$ ) | 0  | $\frac{1}{6}\pi$ |     | $\frac{1}{3}\pi$ | $\frac{1}{2}\pi$ | $\frac{2}{3}\pi$ |      | $\frac{5}{6}\pi$ | π    |
| Sinuswerte<br>("als Schattenlänge")      |    |                  |     |                  |                  |                  |      |                  |      |

| α =                            | 180° | 210°             | 225° | 240° | 270° | 300° | 315° | 330° | 360° |
|--------------------------------|------|------------------|------|------|------|------|------|------|------|
| b =                            | π    | $\frac{7}{6}\pi$ |      |      |      |      |      |      |      |
| Sinuswerte<br>(sin(α)=sin(b)≈) |      |                  |      |      |      |      |      |      |      |

2. Zeichne mit diesen Werten nun selbst den Graphen der Sinusfunktion f mit  $f(x)=\sin(x)$ . Skizziere seinen Verlauf auch bei der zweiten Kreisumrundung für  $2\pi \le x \le 4\pi$ :



Diskutiere mit deinen Nachbarn, welche besonderen Eigenschaften der Sinusgraph besitzt.

3. Fülle für  $\alpha$ = 45°, 135°, 225° und 315° die grau unterlegten Tabellenspalten aus und trage die zugehörigen Punkte auch bei Aufgabe 2 im Graphen der Sinus-Funktion ein.