Class 3 \$6.1
Applications of Integration

"Standard procedure"
"partition and sum"
(i)subdivide the interval $[a, b]$ into n strips of width $\Delta x=\frac{b-a}{n}$
(ii) pick a point x_{i}^{*} in $\left[x_{i}, x_{i+1}\right]$
(iii) Construct a rectangle of width Δx and height $f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)$
(iv) Add up the areas $\sum_{i=1}^{n}\left(f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right) \cdot \Delta x$

(v) Let $n \longrightarrow \infty$ (or $\Delta x \rightarrow 0$)

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right) \cdot \Delta x=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x-\sum_{i=1}^{n} g\left(x_{i}^{*}\right) \Delta x \\
& \text { as } n \rightarrow \infty \sim \int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x \\
& \\
& =\int_{a}^{b} f(x)-g(x) d x
\end{aligned}
$$

Punchline: If f and g are continuous functions on $[a, b]$ and $f(x) \geq g(x)$ for every $a \leq x \leq b$ then the are a between f and g as $x \underset{b}{b}$ goes from a to b is:

$$
\int_{a}^{b} f(x)-p(x) d x
$$

Ex: Let $f=x^{3}, g=-x^{3}, a=-1$

$$
\begin{aligned}
\int_{-1}^{1} x^{3}-\left(-x^{3}\right) d x & =\int_{-1}^{1} 2 x^{3} d x \\
& =\left.\frac{2}{4} x^{4}\right|_{-1} ^{1} \\
& =\frac{2}{4} \cdot 1^{4}-\frac{2}{4}(-1)^{4} \\
& =\frac{1}{2}-\frac{1}{2}=0 ? ? ?
\end{aligned}
$$

$\frac{O T O H}{\text { OT h }}=$ Just compute $\int_{0}^{1} x^{3}\left(-\left(-x^{3}\right) d x\right.$ then multiply by 2 :0

$$
\int_{0}^{1} 2 x^{3}=\left.\frac{1}{2} x^{4}\right|_{0} ^{1}=\frac{1}{2}
$$

\Rightarrow Suggests the actual area is $\frac{1}{2}+\frac{1}{2}=1$.
Punchline 2: To compute the area between two functions f ad g as $a \leq x \leq b$, we compute

$$
\int_{a}^{b}|f-g| d x
$$

Ex: Find the area between $y=\sin (x)$ ad $y=\cos (x)$ as x goes from 0 to $\pi / 2$

$$
\begin{array}{ll}
\sin (0)=0 & \sin \left(\frac{\pi}{2}\right)=1 \\
\cos (0)=1 & \cos (\pi / 2)=0 \\
& \sin (x)=\cos (x) \Rightarrow x=\frac{\pi}{4}
\end{array}
$$

So break into two pieces where sin "passes" cos, i.e.

$$
\begin{aligned}
& \int_{0}^{5 /} \cos (x)-\sin (x) d x+\int_{\pi / 4}^{\pi / 2} \sin (x)-\cos (x) d x \\
& =A R E A=2 \sqrt{2}-2
\end{aligned}
$$

Ex: Find the area of the region bounded by the

You determine $a=0, b=1$ So area is:

$$
\begin{aligned}
& \int_{0}^{1}\left(2 x-x^{2}\right)-x^{2} d x \\
= & \int_{0}^{1} 2 x-2 x^{2} d x=\frac{1}{3}
\end{aligned}
$$

Ex: Find the area of the region bounded by the curves

$$
y=x-1 \quad y^{2}=2 x+6
$$

ASIDE:

$$
\begin{aligned}
& y^{2}=2 x+6 \\
\Rightarrow & y^{2}-6=2 x \\
\Rightarrow & \left.\frac{y^{2}}{2}-3=x\right)
\end{aligned}
$$

OPTION I

$$
\begin{aligned}
\int_{-3}^{-1} \sqrt{2 x+6} & -(-\sqrt{2 x+6}) d x \\
& +\int_{-1}^{5} \sqrt{2 x+6}-(x-1) d x
\end{aligned}
$$

OPTION II Integrate $w / s / t$ y instead of x i.e.

Compute: 4

$$
\begin{aligned}
& \int_{-2}^{4}(y+1)-\left(\frac{1}{2}\left(y^{2}-6\right)\right) d y \\
= & \int_{-2}^{1} y+1-\frac{y^{2}}{2}+3 d y \\
= & \cdots=18
\end{aligned}
$$

