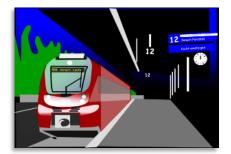
Frank Schumann

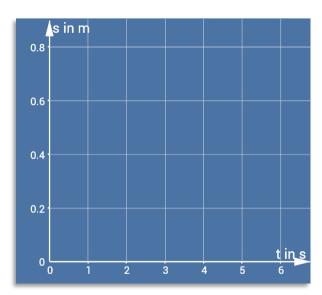
Aufgabenblatt - LE1

(zur Wiederholung: Dreisatz für proportionale Zuordnungen)



(1|2|5)

Aufgabe:


Eine Regional-Modelleisenbahn fährt auf gerader Schiene. Es wurden Messungen durchgeführt. Die Messdaten wurden in einer s-t-Messwerttabelle erfasst:

Zeit t in s	0	1	2	3
Weg s in m	0	0.2	0.4	0.6

Figur LE1-2¹

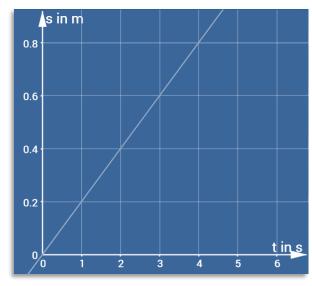
- a) Begründe: $s \sim t$. Gib den Proportionalitätsfaktor k an.
- b) Welche physikalische Bedeutung hat der Proportionalitätsfaktor k?
- c) Zeichne den Graphen der Funktion (eindeutige Zuordnung) $f\colon t\to s$ in das nebenstehende Koordinatensystem.
- d) Gib eine Gleichung an, mit deren Hilfe man voraussagen kann: Welche Wegstrecke legt die Bahn in 5 s (6 s; 10 s; 18 s; 27 s) zurück, wenn die Geschwindigkeit aus dem Messversuch konstant beibehalten wird? Überprüfe deine Voraussagen in der Graphik des Applets.

Figur LE1-3

¹ Graphik aus openclipart.org, CC0 1.0 Universal (CC0 1.0) Public Domain Dedication

Frank Schumann

Lösungsvorschlag für 3a


Begründung für $s \sim t$: Zur doppelten (dreifachen) Zeit gehört der doppelte (dreifache) Weg. Proportionalitätsfaktor: $k = \frac{s}{t} = 0.2 \; \frac{m}{s}$.

Lösungsvorschlag für 3b

Bedeutung für k: Geschwindigkeit 0.2 in Meter pro Sekunde.

Lösungsvorschlag für 3c

Graph von $f: t \rightarrow s$

Figur LE1-4

Lösungsvorschlag für 3d

Gleichung: $s = 0.2 \frac{m}{s} \cdot t$ (Zeit t in s, Weg s in m)

Voraussagen:

Zeit t	5 <i>s</i>	6 <i>s</i>	10 s	18 s	27 s
Weg s	1 m	1.2 m	2 m	3.6 m	5.4 m