Monotonicity - Monotonie

Definition: The function f is defined in an interval I.

If for all $x_1 x_2 \in I$ where $x_1 < x_2$ such that following holds:

$$f(x_1) \leq f(x_2)$$
,

$$f(x_1) \geqslant f(x_2)$$
,

then the function f in I is **monotonically increasing**.

then the function f in I is **monotonically decreasing**.

If there is no equality, then the function f in I is **strictly increasing.**

If there is no equality, then the function f in I is **strictly decreasing.**

Theorem (Monotoniesatz):

Let the function f be differentiable in the interval I. If for all x in I following holds:

then f is strictly increasing in I.

then f is strictly decreasing in I.

Example 1: Investigate the monotonicity of the function $f(x)=2^x$.

Solution: If x_1 , x_2 are real numbers, where $x_1 < x_2$, then $x_2 = x_1 + d$ where d > 0. For the following values of the function we have: $f(x_2) = 2^{x_2} = 2^{x_1 + d} = 2^x_1 \cdot 2^d$. And, as d > 0 then $2^d > 1$. So, $f(x_2) = 2^x_1 \cdot 2^d > 2^x_1 = f(x_1)$. Therefore, f is strictly increasing ("monoton wachsend").

Example 2: (Applying the theorem on monotonicity)

Investigate the monotonicity of the function $f(x) = \frac{1}{3}x^3 - x$

Solution: $f'(x)=x^2-1$. The inequality $x^2-1>0$ is satisfied for x<-1 and x>1 and the inequality $x^2-1<0$ is satisfied for -1< x<1 .

Hence, the function f is strictly decreasing for $-1 \le x \le 1$ and strictly increasing for $x \le -1$ and $x \ge 1$.

ma-bk 11a

Exercises