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ABSTRACT.  In this paper, we explore differential geometric space with curves on 3-
dimensional environment constructed in GeoGebra. Firstly, we construct 3-dimensional 
environment in GeoGebra and Frenet-Serret frame on a curve. Next we explore some 
curves in space and curves mapped on surface. 

 
1 Introduction 

 
Park et al.(2010) constructed 3-dimensional environment in GeoGebra for 3-dimensional 
graphs of functions. In this environment, curves and surfaces can be represented and 
rotated in 3-dimensional space. Although only 2 coordinates can be used in GeoGebra, 3 
coordinates can be represented using new basis defined (V_1, V_2, V_3). Moreover, two 
vectors can be operated by sum of vectors and scalar multiplication in this environment.  

In this paper, I will construct environment for exploring the differential geometry of 
curves and surfaces in 3-dimensional space. Firstly, I will introduce Park et al.(2010)’s result. 
Secondly, Frenet-Serret frame for a curve in GeoGebra will be constructed and the variation 
of vectors (T, N, B) be observed. Thirdly, curves on a surface will be observed. In the process 
of construction, the operations of vector, cross product and inner product, should be 
defined. I will define cross product and inner product using relative cell reference 
functionality in spreadsheet view. 

Now I will start next section with introducing functionality of GeoGebra for 
representing graphs. 

 
2   Constructing basis in 3-dimensional space 
 
2.1    Functionality of GeoGebra 

 
GeoGebra is an educational software which can manipulate 2-dimensional mathematical 
objects with algebraic and geometric representation. For example, y = 2x + 1, a linear 
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function, is represented an equation in algebra view and a line in geometry view. GeoGebra 
also has command and slider. Slider is the visualization of variable in GeoGebra.  
For example, after making slider a, we can type (a, - a + 1) in input field in order to make a 
point on  
y = - x + 1 in geometry view of GeoGebra. 
Generally, standard basis B in 3-dimensional space is {(1,0,0)

t
, (0,1,0)

t
, (0,0,1)

t
}. In 

GeoGebra, each column vectors, E_1, E_2, E_3 can be defined repectively. 
E_1 = {{1},{0},{0}} 

E_2 = {{0},{1},{0}} 

E_3 = {{0},{0},{1}} 

Then three basic rotation matrices(Rx(a), Ry(b), Rz(c)) around x-axis, y-axis and z-axis can be 
defined respectively using three sliders, a, b and c. 

R_x = {{1,0,0},{0,cos(a),-sin(a)},{0,sin(a),cos(a)}} 

R_y = {{cos(b),0,-sin(b)},{0,1,0},{sin(b),0,cos(b)}} 

R_z = {{cos(c),-sin(c),0},{sin(c),cos(c),0},{0,0,1}} 

Multiplying three basic matrix, Rx(a), Ry(b) and Rz(c), we can get the rotation matrix  
Rxyz(a, b, c). 
R_{xyz} = R_{x}*R_{y}*R_{z} 
Now, we multiply Rxyz(a, b, c) to each vectors in standard basis of 3-dimensional space. Then 

we can get e1, e2, e3 which are vectors rotated by angle a, b and c. 
e1 = R_{xyz}*E_1 

e2 = R_{xyz}*E_2 

e3 = R_{xyz}*E_3 

 

 
 

Figure 1: GeoGebra’s algebra view and geometry view 
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Then we can get basis BROT = {e1, e2, e3} rotated by a, b and c. However, the vectors, 
e1, e2, e3, has 3 coordinates, we should project each vectors to yz-plane for representing in 
geometry view of GeoGebra. Finally, we can get vectors, e_1, e_2, e_3, which represent 3-
dimenstional basis projected into 2-dimensional space (e_1, e_2 and e_3 are vectors and 
V_1, V_2 and V_3 are points). 

e_1=(Element[Element[e1,2],1], Element[Element[e1,3],1]) 

e_2=(Element[Element[e2,2],1], Element[Element[e2,3],1]) 

e_3=(Element[Element[e3,2],1], Element[Element[e3,3],1]) 

V_1 = e_1 

V_2 = e_2 

V_3 = e_3 

 
2.3    Applications 

 
Before starting this section, we added some decorations in geometry view, x-axis, y-axis, z-
axis and each plane, which can help the figures recognized well in 3-dimensional space. 

 
2.3.1    Tetrahedron 

 

The four vertices of tetrahedron are P1 = (0,0,0), P2=(2,0,0), P3=(1,  ,0), P4 = (1, , 

) and we can type these commands in input field of GeoGebra (Figure 3). 
P_1 = 0 V_1 + 0 V_2 + 0 V_3 

P_2 = 2 V_1 + 0 V_2 + 0 V_3 

P_3 = 1 V_1 + sqrt(3) V_2 + 0 V_3 

P_4 = 1 V_1 + sqrt(3)/3 V_2 + 2*sqrt(6)/3 V_3 

 

 
 

Figure 2: 3-dimensional basis constructed in GeoGebra 
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2.3.2    Helix 

 
Next we will draw helix in 3-dimensional space. We can parameterize a point on a helix as 
(cos(t), sin(t), t). 

E = cos(t) V_1 + sin(t) V_2 + t V_3 

 

 
 

Figure 3: Tetrahedron in 3-dimensional space 

 
In this time, t is already defined as x-coordinate value of point A on x-axis (2-

dimensional environment of GeoGebra). We can draw locus of the point using locus 
command/tool, if we type locus[E, A] in input field of GeoGebra. 

 
2.3.3    Surfaces 

 
We can’t draw surfaces directly in geometry view of GeoGebra; it is impossible to fill colors 
in arbitrary Jordan curves (simple closed curves). I found some alternative solutions, 
drawing contours and mapping some lines from xy-plane (domain) on the surface. 

Firstly, we choose five points of the same z-coordinate value. Then, we define a 
quadratic curve(conic section) with five points, as we can make a curve(contour) with five 
points chosen using Conic through Five Points tool of GeoGebra.  

 
P_1 = sqrt(1 + 1/u) V_1 + u V_3 

P_2 = sqrt(1 + 1/u) V_2 + u V_3 

P_3 = -sqrt(1 + 1/u) V_2 + u V_3 

P_4 = -sqrt(1 + 1/u) V_1 + u V_3 

P_5 = (sqrt(1 + 1/u) V_1 + sqrt(1 + 1/u) V_2)/sqrt(2) + u 

V_3 
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Figure 4: Helix in 3-dimensional space 

 
Secondly, in xy-plane (domain), we make points go through various paths, especially 

line paths. We can map these lines through a function into 3-dimensional space using locus 
command/tool and spreadsheet view in GeoGebra. In spreadsheet view, we can create the 
rigid on xy-plane and map them into 3-dimensional space (Figure 6, Figure 7). 

 

 

 
 

Figure 5: Surface of revolution (  ) 
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Figure 6: Graph of  

 
 

Figure 7: Graph of  
 

3.   Constructing environment for differential geometry 
 
In this section, we will review some formulas of differential geometry. Then I will construct 
environment for exploring differential geometry and observe movement of points in space 
and on a surface. 
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3.1    Frenet-Serret frame 

 
Let r(t) be a curve in 3-dimensional Euclidean space and s(t) represent the arc length of a 

point which has moved along r(t) (  ). In detail, s(t) is given by 

.  

With the curve parametrized by its arc length, r(s) = r(t(s)), it is possible to define the 
Frenet-Serret frame (or TNB frame): 

 
∙ The tangent unit vector T is defined as 

 
∙ The normal unit vector N is defined as 

 
 
∙ The binormal unit vector B is defined as the cross product of T and N: 

 
 

If the curve is not parametrized by arc length, we could use other equivalent 
expression of Frenet-Serret frame. Suppose that the curve is given by r(t), then the tangent 
unit vector, T, can be written as 

 

 
 
The normal unit vector N can be represented as 
 

 
 
The binormal unit vector B is then 
 

 
 

The curvature  is  
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And the torsion  is  

 

 
 
3.2.    Constructing Frenet-Serret frame on a curve 

 
In 3-dimensional environment constructed before, I will define a curve x(t) parametrized by 

variable t. For defining a curve  in 3-dimensional space, we 

need to define each coordinate functions, x_{1}(x), x_{2}(x), x_{3}(x) and their derivatives 
using the GeoGebra command, derivative[ ] in advance. For example, I define coordinate 
functions of helix and its derivatives on GeoGebra as follows. 

 
x_1(x) = sin(x) 

x_2(x) = cos(x) 

x_3(x) = x 

 

dx_1(x) = derivative[x_1(x)] 

dx_2(x) = derivative[x_2(x)] 

dx_3(x) = derivative[x_3(x)] 

 

ddx_1(x) = derivative[dx_1(x)] 

ddx_2(x) = derivative[dx_2(x)] 

ddx_3(x) = derivative[dx_3(x)] 

 

dddx_1(x) = derivative[ddx_1(x)] 

dddx_2(x) = derivative[ddx_2(x)] 

dddx_3(x) = derivative[ddx_3(x)] 

 

And a point on helix can be represented as follows (t is already defined). 
 

A = x_1(t) V_1 + x_2(t) V_2 + x_3(t) V_3 

 

For constructing Frenet-Serret frame on a curve, we should define the operations of 
vector, cross product and inner product in 3-dimensional vector space. Using spreadsheet 
view in GeoGebra, we can define these operations easily. 

In Figure 8, I entered each entries of vector (1, 2, 3) into cell A2, B2, C2 and vector  
(4, 5, 6) into cell A3, B3, C3 respectively. Then I define A4, B4, C4 and D4 for using 

relative reference functionality as follows. 
 
A4 : B2*C3 – B3*C2 

B4 : A3*C2 – A2*C3 

C4 : A2*B3 – A3*B2 

D4 : A4 V_1 + B4 V_2 + C4 V_3 

 

Inner product can be defined similarly in spreadsheet view of GeoGebra (Figure 9). 
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Figure 8: Defining the operation of cross product 

 

 
 

Figure 9: Defining the operation of inner product 

 
E4 : E2*E3 

F4 : F2*F3 

G4 : G2*G3 

H4 : E4 V_1  + F4 V_2 + G4 V_3 

 

      Now we can construct Frenet-Serret frame in spreadsheet view as follows (Figure 10). 

 

 
 

Figure 10: Defining Frenet-Serret frame of x(t) 

 
If you fill the cells in spreadsheet view as follows, you can get the tangent unit vector 

of x(t), T(t), in cell F7. 
 
A7 : dx_1(t) 

B7 : dx_2(t) 

C7 : dx_3(t) 

D7 : A7 V_1 + B7 V_2 + C7 V_3 

E7 : sqrt(A7^2 + B7^2 + C7^2) 

F7 : D7/E7 

 

In case of the normal unit vector of x(t), N(t), you can get it in cell F9 when copying 
and pasting cells from A4 to F4 in row 4 into cell A9 (relative reference functionality of 
spreadsheet view). 
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A8 : ddx_1(t) 

B8 : ddx_2(t) 

C8 : ddx_3(t) 

Copy and paste A4, B4, C4, D4, E4, F4 into A9 

 

We can get the binormal unit vector of x(t), B(t) in the same way (Figure 10). 
 
A12 : A9 / E9 

B12 : B9 / E9 

C12 : C9 / E9 

 

A13 : A7 / E7 

B13 : B7 / E7 

C13 : C7 / E7 

Copy and paste A4, B4, C4, D4 into A14 

 

 
 

Figure 11: Frenet-Serret frame of curve x(t) 

3.3.    Examples of some curves 

 
In this environment, we can observe many curves and movement of the point on the curves 

which we haven’t seen yet. For example, if we change x_1(x) = sin(x) to 1/x^2, we 
can get the graph of Figure 12. 

If we change x_1(x) to cos(2x) and x_2(x) to cosh(x), we can get the graph of 
Figure 13. 
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Figure 12: Graph of  

 

 

 

 
 

Figure 13: Graph of  
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4.   Exploring surfaces with curves 
 
In this section, we will explore surfaces with some tools, curves on the surface defined on 

xy-plane (domain). The movement of the variation vectors, T, N, B and the values of  and 

 will help you observe movement of the curve. 

 
4.1.    Mapping curves into the surface 
 

4.1.1.    Review of defining surface 
In Figure 14, column A and B are used for defining the grid on xy-plane and column C for 

defining the function, . Using auto completion functionality in 

spreadsheet view, we can fill the rest of cells in column C easily. 
loc_{s} in column A and B is the value of x-coordinate of point (LOC_{s}) on x-axis in 

2-dimensional environment of GeoGebra for locus command/tool. 

 

 
 

Figure 14: locus for representing surface in spreadsheet view 
 

4.1.2.    Defining mapping function 

 
We will explore z = f (x, y) type of function (surface) here. The curve constructed before has 

3 coordinate functions, x_1(x), x_2(x) and x_3(x). If we define x_3(x) as the 

equation of x_1(x) and x_2(x), a point on the curve will move on the surface with 

Frenet-Serret frame. If you want to see the domain curve, define a point of V_{dom} = 

x_1(loc) V_1 + x_2(loc) V_2 and type locus[ V_{dom}, LOC ] in input 
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field of GeoGebra. loc is x-coordinate value of point LOC defined on x-axis in 2-dimensional 
environment of GeoGebra (Figure 15). 

 

 
 

Figure 15: locus for representing domain curve,  

 
4.2.1.    Sphere 

The function of sphere (radius 3) is . Thus we change 

 x_3(x) = sqrt(9 – x_1(x)^2 – x_2(x)^2 ) 

 in algebra view and enter the equation to the cells from C22 to C47 using auto completion 
functionality in spreadsheet view (Figure 16).  
 

We can change domain curve as new functions. For example, if the functions are  
x_1(t) = x and x_2(x) = x^2,  

we can get the graph of Figure 17. 

 
4.2.2.    Surface of Saddle 

For representing surface of saddle, the equation is .  

Thus we define x_3(x) as –x_1(x)^2 + x_2(x)^2  

and change the equation in spreadsheet view (Figure 18). 
 

 
4.2.3.    Torus 

For representing torus, the equation is . Thus we define 

x_3(x) as sqrt(1 – (sqrt(x_1(x)^2 + x_2(x)^2)-2)^2) 

 and change the equation in spreadsheet view (Figure 19). 
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Figure 16: Defining sphere and curve on sphere ( ) 

 

 
 

Figure 17: Graph of curve on sphere (Domain: y = x
2
 in xy-plain) 
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Figure 18: Graph of curve on surface of saddle (Domain: y = x
2
 in xy-plain) 

 

 
 

Figure 19: Graph of curve on torus (Domain: y = x
2
 in xy-plain) 
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5.  Conclusion 
 
This study is an application for the use of Dynamic Mathematics Software, especially 
GeoGebra, as mathematics exploration environment. We explored 3-dimensional space 
with curves and surfaces using GeoGebra. For exploration, we constructed the environment 
for representing 3-dimensional space in GeoGebra according to Park et al.(2010)’s result. 
After that, we constructed Frenet-Serret frame of a curve in 3-dimensional space for 
observing movement of the variation vectors, T, N and B. In the process of constructing, we 
used the command for derivative function, derivative[], and the functionalities of 
spreadsheet (auto completion functionality, relative reference functionality). We observed 
many curves and movement of a point on a curve and the variation vectors, T, N and B. We 
also observed curves on many surfaces (sphere, surface of saddle and torus).  
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