

On this diagram, chords are drawn starting from zero and joining every $7^{\text {th }}$ point: zero to seven; seven to fourteen and so on until after several times around the circle we return to our first point. The result of using an increment of 7 on a 24 point circle is a star.

The aim of this project is to figure out what increments result in a regular polygon; what increments results in a star and when it is a star, when does it use all 24 points and when does it only use some points? And of course, why?

In this investigation, we have 4 variables:

1. The number of points on the circumference of the circle. Let's use N to represent this number.
2. The increment we use to draw the chords. Let's use n to represent this number.
3. The number of chords we need to draw to return to the starting point. Let's use c to represent this number.
4. The value of the final point, if we keep counting in our increment as we go around and around the circle. Let's use v to represent this number.

Use the applets at https://ggbm.at/epewd6aw to draw all other increments, and record results on the pages that follow.

Star Drawings Record Sheet

12 Point Star

9 Point Star

15 Point Star

Hypothesis

When joining N points on a circumference using an increment of n, one of three shapes occurs:

1. A regular polygon
2. A star that uses all N points
3. A star that uses only some of the points but not all.

A regular polygon occurs when	An N point star occurs when	A star that has less than N points occurs when

Prediction for a 24 point circle

Suppose $N=24$. The following increments will yield regular polygons (state the kind of polygon for each):	Suppose $N=24$. The following increments will yield a 24 point star (state the end value for each increment):	Suppose $N=24$. The following increments will yield a star that has less than 24 points (state the end value for each increment):

Test your prediction on the 24 point circle https://ggbm.at/mpnPshPh and record your results on the following page.

Increment n	$\begin{gathered} \text { Polygon } \\ \text { (what kind?) } \\ \text { or Star? } \end{gathered}$	Chords c	End Value v	Example using an increment of
1				24 point circle $\quad 23 \quad 0$ or 24
2				
3				20
4				19
5				18
6				$17 \oint$
8				15
9				$13 \bigcirc$
10				If the radius of the circle is 5 cm , calculate the length of one chord.
11				

Conclusions:

There are 23 possible increments for a 24 point star. For which increments was your prediction correct?

Write down any formula that you have created that relate any two or more of the values N, n, c, v.

Now choose your own value N, between 10 and 100 . Choose an increment that will give you one of the following, and state the values required:

$N=$		
Regular Polygon.	N point star.	
Let $n=$	Let $n=$	Star, less than N points.
This will yield a regular polygon with sides.	This will yield an N point star.	
The number of chords $c=$		
The end value $v=$	The number of chords $c=$	
The end value $v=$	This will yield a star with points.	
The number of chords $c=$		

Confirm your answers with the 'star drawings' applet: https://ggbm.at/srwmxtwt

Finally:

Suppose there are N points on the circle, and you use an increment of n and the radius of the circle is 5 cm . How long is one chord, in terms of N and n ?

