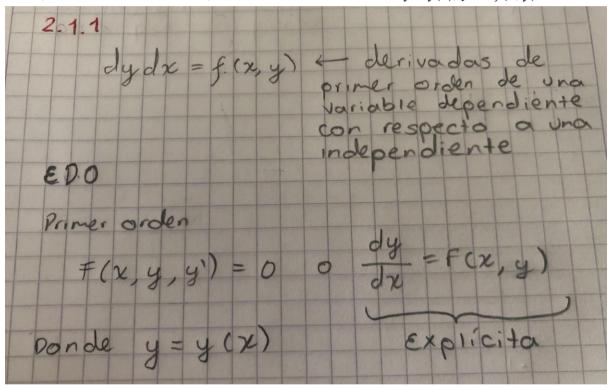
HOJA DE TRABAJO 1 David Cuellar Juan Manuel Ruiz Luisa Acuña Camila Arevalo Anderson Cardenas

Guia de lectura

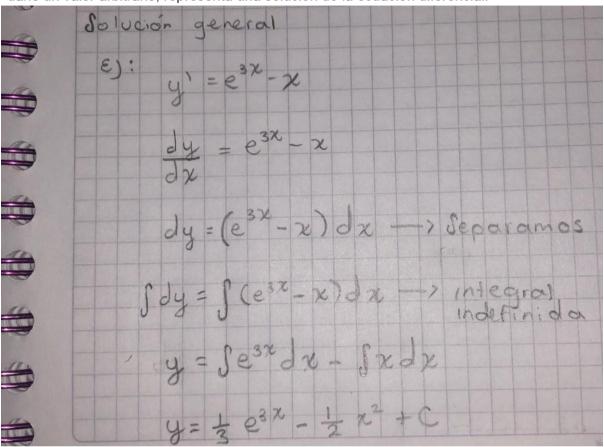
2.1.1. Es importante interpretar adecuadamente el lenguaje general con el que se define una Ecuación Diferencial Ordinaria (EDO) de primer orden: dy dx = f(x, y), y un Problema de Valor Inicial (PVI) de primer orden: dy dx = f(x, y), y(x0) = y0. En ambos casos hay que identificar con claridad la información que se ofrece, en especial el significado y el rol, en el contexto de la EDO, de cada una de las funciones y = y(x), y = f(x, y).



Problema de Valor Inicial: Consiste en una ecuación diferencial presentada de la forma $\frac{dy}{dx} = f(x,y)$, unida a una condición inicial $y(x_0) = y_0$. Busca encontrar una función derivable y = y(x) que cumpla las dos condiciones mencionadas en algún intervalo que contenga x_0

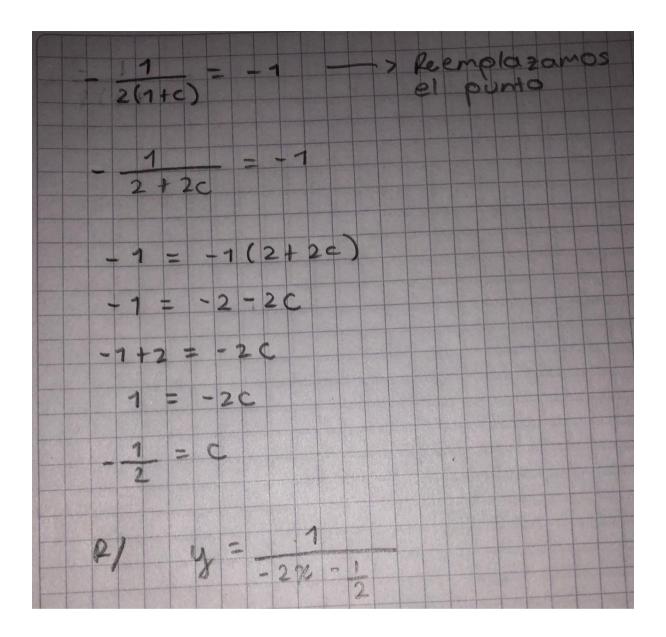
2.1.2. Debe hacerse claridad sobre el concepto de solución de una ecuación diferencial, con todas las condiciones exigidas. Alrededor de este concepto debe poderse distinguir entre una serie de términos asociados: solución general, solución particular, solución singular, solución implícita, familia paramétrica de soluciones.

Solución General: Cuando se tiene una ecuación diferencial de primer orden del tipo $\frac{dy}{dx}=f(x)$, se puede obtener una solución general integrando ambos lados de la ecuación, que para este caso se obtendría $y(x)=\int f(x)\ dx + C$, donde C es una constante que al darle un valor arbitrario, representa una solución de la ecuación diferencial.



Solución Particular: Teniendo en cuenta la definición de solución general, si consideramos que $\int f(x) \ dx = G(x)$, se obtendría la ecuación y(x) = G(x) + C, que representa la ecuación de una curva, y si tenemos una condición inicial $y(x_0) = y_0$, se podría resolver la ecuación en términos de C, quedando de esta manera $C = y_0 - G(x_0)$, dando como resultado la solución particular de la ecuación original que satisface la condición $y(x_0) = y_0$.

Solución Particular Punto (1, -1) $\frac{dy}{dx} = 2y^2$ a ambos lados $dx\left(\frac{dy}{dx}\right) = 2y^{2}\left(\frac{dx}{dx}\right)$ 1 dy = 2y2 dx . 1 2y2 dx . 2y2 -> integramos $-\frac{1}{2y} = x + c$ 1 = (x+c) 24 70 +C 2+0 - desperamos y



Solución singular: es aquella que se halla sin integrar la ecuación diferencial y sin conocer, por lo tanto, su integral general ni sus integrales particulares.

Familia paramétrica de soluciones: Se define por $dy/dx = y^2$, una solución para cada parámetro C. Si C = 1 se obtendría la solución particular y(x) = 1/1 - x

2.1.3. En la sección 1.2 estudie con cuidado el "problema del nadador" (página 16). ¿Por qué tan $\alpha = dy/dx$?

La notación dy/dx es equivalente a la expresión f'(x) (primer derivada) vista en cálculo de una variable, esta es en sí misma la "pendiente" de una función evaluada en un punto. Y, como tan α corresponde a la pendiente de la trayectoria del nadador, podemos decir que también es igual a dy/dx.

2.1.4. Es importante hacer las generalizaciones que sean posibles a EDO de orden superior, en cuanto a lenguaje, definiciones y técnicas.

Una ecuación diferencial ordinaria de orden superior es una que relaciona una variable dependiente: y y sus derivadas de cualquier orden con respecto a una variable independiente x

Ej:

$$f\left(x, y(x), Dy(x), D^2y(x), \dots, D^ny(x)\right) = r(x)$$

En donde $Dy(x), D^2y(x), \ldots, D^ny(x)$ son las derivadas de orden $1, 2, \ldots, n$ de la función y(x).

Por analogía con las ecuaciones diferenciales de primer orden, una solución general de la ecuación diferencial es una familia de curvas del plano que contiene n constantes arbitrarias

$$F(x, y, C_1, C_2, \ldots, C_n)$$