

SATELLITE CONFERENCE FLUMINENSE FEDERAL UNIVERSITY – NITERÓI – BRAZIL JULY 30, 2018

Descriptive Geometry and Perspective in a Unified Way with GeoGebra

JULY 30, 2018

Anderson Mayrink da Cunha

UFF - Fluminense Federal University

Motivation

- Some students of descriptive geometry have difficulties in spatial visualization of objects represented in its two adjacent views.
- The construction of perspective drawings (using only parallel projections) is useful in the spatial visualization of descriptive geometry views.
- We propose the use of GeoGebra in the visualization of objects in two views of descriptive geometry and also in perspective of a unified mode, in only one GeoGebra graphics view.

Descriptive Geometry Course

- Background: Geometric Constructions and Geometry.
- Spatial visualization and Perspective.
- Descriptive Geometry
 - Orthogonal (parallel) projection of an object in two planes of projection: the frontal and horizontal plane.
 - Two adjacent views: These two views (frontal and horizontal) are represented in the same picture.

Parallel Projection

- Projection of an object in three-dimensional space onto a projection plane, where the rays are parallel to each other.
- Perspective based on parallel projection is simple to build.
- Let x, y, z a 3D base and P= ax + by + cz. The projection of P is P'=ax' + by' + cz'
 - x', y', z' are the parallel projections of x, y, z.
 - *P'*, *x'*, *y'*, *z'* are *2D* vectors
 - *a, b, c* are real numbers

Pictures from Wikipedia

Perspective based on parallel projections

P'= ax' + by' + cz', where

- *P', x', y', z'* are 2D vectors
- |x'| = rx * |x|
- $|y'| = r_y * |y|$
- |z'| = rz *|z|
- *rx, ry, rz* are the contraction factor of the axes (real numbers)

Who are x', y', z' and the values of rx, ry, rz?

- ≻Axonometry
- Let the user choose

Pictures from Wikipedia

Descriptive Geometry and Perspective

- Descriptive Geometry coordinates
 = Base of the *3D* space: abscissa, afastamento, cota.
- Let's consider that these axes represented in the descriptive geometry picture are the projected axes of the perspective.
- Moving these axes we have a perspective *3D* visualization.
- Display *3D* information only if angle between afastamento e cota differs from *180* degrees.

Common types of Perspective

	Alpha	Beta	rz	Гх	ry
Cavaleira, Alpha=120	120	90	1	2/3	1
Cavaleira, Alpha=135	135	90	1	1/2	1
Cavaleira, Alpha=150	150	90	1	1/3	1
Militar	135	135	1/2	1	1
Isometria	120	120	1	1	1
Engenheira	132	97	1	1/2	1

Pictures from Wikipedia

Examples

- The point and its position
- The line and its features
- Plane and intersections
- Rotation method with vertical axis
- Polyhedra

References

- GeoGebra web page: https://www.geogebra.org/
- Wikipedia pages: Axonometry, Axonometric projection, Descriptive geometry, Parallel projection
- A. R. Príncipe Júnior, Noções de Geometria Descritiva, vol. 1 e 2.
- Hawk, M. C., Descriptive Geometry, McGraw-Hill, 1962.
- Notas de Aula de Anderson Mayrink da Cunha