

Transforming Linear Algebra Education with GeoGebra Applets NSF TUES Grant Award ID: 1141045

Normal Form of a Line

- **Objectives:** 1. Define and graph the general form of a line and the vector form of a line.
 - 2. Show the line's relationship to it's general, vector, and normal forms.

Equations of a line in \mathbb{R}^2 <u>Algebraic Forms:</u> \vec{p} is the vector form of the point $p = (p_1, p_2)$; \vec{x} is the vector form of any point $x = (x_1, x_2)$

General form	Vector form	<u>Normal Form</u>	
ax + by = c	$ec{x} = ec{p} + t \cdot ec{d}$, $-\infty < t < \infty$ $egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} p_1 \ p_1 \end{bmatrix} + t \cdot egin{bmatrix} d_1 \ d_2 \end{bmatrix}$	$\vec{n} \bullet \vec{x} = \vec{n} \bullet \vec{p}$ $\vec{n} \bullet (\vec{x} - \vec{p})$	

Review: Line – Vector Form

1. On the coordinate grid, plot and label the points (1, 1) and (2,-1). Graph the line **L** defined by these points. Determine the equation of **L** and put it into the general form of a line.

2. Define the vector form of this line $\vec{x} = \vec{p} + t \cdot \vec{d}$, $-\infty < t < \infty$,

For line **L**, $\vec{p} =$

 $\vec{d} =$

Draw and label these vectors.

State the vector form of line L.

Calculate the vector \vec{x} , draw and label it for the following t values :

- $t = 1 \rightarrow \vec{x} =$
- $t = 3 \rightarrow \vec{x} =$ _____

 $t = -1 \rightarrow \vec{x} = \underline{\qquad}$ $t = -2 \rightarrow \vec{x} = \underline{\qquad}$

Transforming Linear Algebra Education with GeoGebra Applets NSF TUES Grant Award ID: 1141045

State the vector form of line L determined above. _____ Here: $\vec{p} = \vec{d} =$

Normal Form of a Line – two forms

<u>Normal Form</u>	
$\vec{n} \bullet \vec{x} = \vec{n} \bullet \vec{p}$	
$\vec{n} \bullet (\vec{x} - \vec{p}) = 0$	

If \vec{n} is a normal vector to \vec{d} , then $\vec{n} =$

Using \vec{n} state each Normal Form of *L*.

 $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$ becomes _____ $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$ becomes _____

Draw the line, graphing and labeling \vec{n} , \vec{x} , and \vec{p}

Explain how your results relate to the

a) General Form of *L*.

8

b) Vector Form of *L*.