

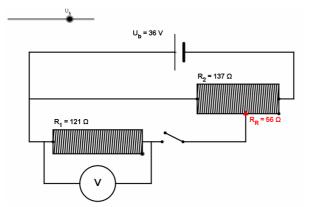
Виртуальная лабораторная работа

ДЕЛИТЕЛЬ НАПРЯЖЕНИЯ

Цель работы: с помощью компьютерной модели изучить принцип действия

резистивного делителя напряжения.

Оборудование: персональный компьютер;


математическая программа GeoGebra

https://www.geogebra.org/

(Android-смартфон и мобильная версия GeoGebra 2D) https://play.google.com/store/apps/details?id=org.geogebra.android

Модель: 2D GeoGebra-апплет (ЭЛД - Делитель напряжения) https://www.geogebra.org/material/download/format/file/id/FG74mkjh

Порядок выполнения работы

Puc. 1. GeoGebra-annлеm

- 1. **Откройте апплет** "ЭЛД Делитель напряжения" (*Файл/Открыть файл с GeoGebra...*, а далее воспользоваться поиском по названию апплета "ЭЛД Делитель напряжения").
- 2. Изучите апплет, изображающий электрическую цепь, состоящую из источника напряжения U_b , нагрузки R_I и делителя напряжения на реостате R_2 . С помощью виджета в апплете Вы можете менять напряжение источника U_b , а также менять сопротивление нагрузки и полное сопротивление реостата растягивая их за нижний

правый угол. Передвигая красную стрелку на реостате Вы можете менять положение его ползунка. Щёлкая по ключу на схеме, Вы можете подключать или отключать ветвь с нагрузкой R_I к делителю на реостате R_2 .

- 3. **Выясните**, что представляют собой резистивный делитель напряжения и каков его принцип действия. **Запишите** найденную Вами информацию.
- 4. **Выясните**, где и для чего используются делители напряжения, какие приборы можно создать на его основе. **Запишите** найденную Вами информацию.
- 5. Зарисуйте принципиальную схему делителя напряжения, при этом представьте реостат как два последовательно соединённых резистора, между которым включается ползунок и ветвь цепи с нагрузкой.
- 6. **Изучите** работу делителя напряжения без нагрузки. Для этого пользуясь законом Ома **аналитически рассчитайте** зависимость напряжения $U_{\text{ДЕЛ}}$ на левой части реостата (слева от ползунка) от значения сопротивления R_R правой части реостата.
- 7. Теперь пользуясь полученной Вами формулой и *Excel* рассчитайте 10 значений $U_{\text{ДЕЛ}}$ для разных значений R_{R} . Занесите Ваши данные в *таблицу* 1.
- 8. **Рассчитайте** по данным *таблицы 1* значения коэффициента передачи $K_I = U_{\text{ДЕЛ}}/U_b$. **Постройте график** зависимости $K_I(R_R)$.
- 9. **Изучите** работу делителя напряжения под нагрузкой. Для этого пользуясь законом Ома **аналитически рассчитайте** зависимость напряжения U_I на резисторе R_I при замкнутом ключе от значения сопротивления R_R правой части реостата.
- 10. Аналогично предыдущим пунктам работы **рассчитайте** 10 значений U_1 для разных значений R_R .
- 11. **Рассчитайте** по Вашим данным значения коэффициента передачи $K_2=U_1/U_b$. **Постройте** график зависимости $K_2(R_R)$.

12. Сделайте общие выводы по Вашему исследованию.

Таблица 1. Коэффициенты передачи делителя напряжения.

No	R_R , Om	без нагрузки		под нагрузкой	
		<i>U</i> ДЕЛ, В	K_{I}	U_l , B	K_2
1					
2					
3					
•••					
10					