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 SIAM J. NUMER. ANAL.

 Vol. I 1, No. 3, June 1974

 ERROR BOUNDS FOR INTERPOLATING CUBIC SPLINES UNDER

 VARIOUS END CONDITIONS*

 THOMAS R. LUCASt

 Abstract. Conditions are given when some finite difference type operators acting on the second

 derivative of a C2-cubic spline interpolate of a function f over a locally uniform partition approximate

 f ", f "' and f V at selected knots by orders up to 0(h4). Points are identified where f ', f " and f "' are

 approximated by s', s" and s"' to the order h4, h3 and h2 respectively. End conditions are analyzed

 which give these results globally over uniform partitions for sufficiently smooth functions.

 1. Introduction. Let m = {a = xo < x1 < ...< xm = b} be a partition of
 [a, b]. Then s is said to be a cubic spline over 21m if s E C2[a, b] and s restricted to

 [xi -1, xi] is a cubic polynomial for 1 ? i < m. The space of all such cubic splines
 is denoted by Sp (7m 3). If in addition s(xi) = f (xi) for 0 < i < m, s is said to be
 an Sp (7rm, 3)-interpolate of f. Since dim Sp (m, 3) = m + 3, two additional
 linearly independent conditions, usually taken near the endpoints, are required

 to uniquely determine an Sp (7rm, 3)-interpolate of a function.
 The following notation will be used. Superscripts of several types denote

 derivatives. Thus f", f 2) and f d all denote the second derivative of f. Define

 f(i) =fj)(Xi) 0< i < m, hi = x- xi-1, 1 < i < m h = max(hi), h = min(hi).
 For any a > 1, P0[a, b] is the collection of all partitions for which h < ah; if
 a = 1 the partitions are uniform and h = h = h.

 For uniform partitions the following identity is well known [1, p. 12]:

 (1.1) s>1 + 4s' + s?+ = 3h-'[si+l - si1], 1 < i m -1.

 Curtis and Powell [4] have found potential quantitative relations between f and
 an interpolating cubic spline s (the end conditions do not enter into their cal-
 culations) by the formal use of the calculus of difference operators. For example
 from (1.1), letting E = ehD be the forward difference operator, they get

 (E-1 + 4I + E)s' = 3h-'[E -E-l]f

 and thus

 s, = 3h (eKhD + 4I + ehD<l(ehD e ehD)f

 Formally expanding the power series and dividing (assuming f to be sufficiently
 smooth) gives

 (1.2) si= fi- f + 0(h6) 180

 In a similar fashion, using other spline identities, they have developed the

 formal expressions

 * Received by the editors September 25, 1972, and in revised form June 25, 1973.

 t Department of Mathematics, The University of North Carolina at Charlotte, Charlotte, North
 Carolina 28213. This research was supported in part by a grant from the Foundation of the University
 of North Carolina. 569

This content downloaded from 132.248.180.34 on Wed, 22 Aug 2018 15:46:47 UTC
All use subject to https://about.jstor.org/terms



 570 THOMAS R. LUCAS

 (1.3) = f h2 ? f 0(h)
 12~

 and

 (1.4) (x+) = fiv + 0(h4).

 Since s"(x) is a linear function between the partition points, (1.4) is equivalent
 to

 (1.5) fiv = s'+0-2s' ? s ? 0(h4)

 Combining (1.3) and (1.5) gives

 (1.6) f= _ i +0s' ? s12 + 0(h4)

 The formal expressions (1.2), (1.6) and (1.5) give approximations to f, f7 and
 f iv of 0(h4) accuracy in terms of simple linear functionals on an interpolating
 cubic spline s.

 With the exception of (1.2) there seems to have been no published exploration
 of the existence of higher order estimates of this general type. That max If' -s
 0 0(h4) for f E C5[a, b] and uniform partitions with the end conditions

 (1.7) s'(a) = f'(a), s'(b) = f'(b)

 has been established by Birkhoff and deBoor [2] and Hall [6]. Kershaw [10] has
 shown that for f E C5 [a, b] and nonuniform partitions with either the end con-
 ditions (1.7) or for periodic f the end conditions

 (1.8) s'(a) = s'(b), s"(a)= s"(b),

 that the error bound

 (1.9) max If -s'l < ?1h2 max Ih -h I 11 f'4'1110 + I h4 1f'5)11,0

 is valid. Using an earlier result [8], Kershaw [10] has also shown that for the
 "inferior" end conditions

 (1.10) s"(a) = f"(a), s"(b) f="(b),

 or

 (1. 1) s"(a) = 0, s"(b) = 0

 local results similar to (1.9) hold in intervals bounded away from the end points,
 in particular with uniform partitions if' -s'l = 0(h4) at a number of interior
 knots.
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 ERROR BOUNDS 571

 The purpose of this study is to determine conditions which insure the validity
 of a number of error bounds which include (1.2)11.6). Our approach is to show

 that the local validity of the expression (1.3) or its higher order generalization

 (1.3)' Si = fit- -f_ V + hf?+ 0(h6)
 12 360

 for a family of functions a over a fixed subinterval where the partitions are uniform
 implies that a whole class of other error bounds are also satisfied inside the sub-
 interval. These include the ones mentioned above and in addition

 s'(xi + 0.5h) = f'(xi + 0.5h) + 0(h4),

 s"(zi) = f "(zi) + 0(h3),

 where zi is either of the roots of the second degree Legendre polynomial 3Z2 _ 1 = 0,
 normalized to [xi, xi+ 1], and

 s"'(xi + 0.5h) = f"'(xi + 0.5h) + 0(h2).

 This program is carried out in ? 2. Also a lemma is given which shows that if

 If - s'" ? Kh2 over a subinterval [oc, f,] in which f is in C4 then

 JIDj(f(x) - s(x))L[Xxi 1]? Kh4i, 0 ? j < 2,

 where xi0, x G E , c _ xio < xi, < f,, showing that the usual spline error bounds
 are included in this theory.

 In ? 3 we develop global results for uniform partitions with f e C'[a, b] for
 some n, 4 < n < 8, by giving conditions when variations of (1.3) or (1.3)' are
 globably valid. As might be expected from Kershaw's results, the choice of end
 conditions plays a critical role in the quality of these error bounds if the function
 is sufficiently smooth. A number of end conditions are analyzed which come
 progressively closer to the full order of (1.3)', one of them achieving it.

 Recently Kammerer and Reddien [7] have developed local error bounds for

 Sp (71, 3)-interpolates of a function which is only locally in C4, which are similar
 to the usual global L'[a, b] bounds. In ? 4 we extend this approach to give general
 conditions under which high order local smoothness of f over a locally uniform
 partition implies that bounds of the type (1.3) and (1.3)' hold in such local regions.

 The applications of these results would include: (i) a significantly increased
 choice of high quality computationally feasible end conditions with a means for
 judging their utility; (ii) knowledge of where the evaluation of derivatives of
 spline interpolates will be of higher order; (iii) the means to compute 0(h4) order
 estimates off', f f .' and f V from just the values of an interpolating cubic spline
 and its derivatives at the knots, for sufficiently smooth f; (iv) the suggestion of
 new modified collocation schemes of high order for nonlinear boundary value
 problems.

 The following cubic spline identities will be needed [1]:

 h_ + "h Si-1 + 2s' + hi +hi Si+,
 (1.12) 6 + h+ _

 _ 6 [S?1 - Si Si S-
 hi + hi+,[hi+, - hi]' 1 ni
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 572 THOMAS R. LUCAS

 (1.13) s'; = hi + 3 s shh 1h 1 < i m

 (1.13)' si1 =- ? + h + 1 _ m;
 6 3 hi ?im

 (1.14) s'(xj + O.5hi)= - h1 24'(st''-sh'), O ? i?<m-1;

 (1.15) s(x; ? O.5h) = S'?S +i -16(s;'?+s;'?1), O?_i?_m- 1;

 (1 15)' s(x; ? O.25h)= si_ (7s" 5s--S), 0 ? i m 1;

 S i+ 3~1 - i hi+2 (/

 (1.15)" s(x + 0.75h) = ________ - (5s+7s ), O<im< 1

 4i 1 28

 (1.16) s+xh 2 0 O?h T I m - < i < 1 .

 For uniform partitions (1.12) becomes

 (1.12)' S_ 4s' + s'05h = 6h-2[si -72si + si+, 1 < i < m -1.

 We denote any generic constant which is independent of the maximum
 partition spacing by the general symbol K. It may take on different values in any
 two usages.

 2. Locally induced error bounds.

 THEOREM 1. Let [a', b'] and [ (,5] be subintervals of [a, b] related by a ? a'
 - 1 <p 1?b' < b. Let {2tm} be a sequence of partitions of [a, b] such that each im
 restricted to [a', b'] is uniform. Denote the first and last knots of 21m in [c, /B] by xi0
 and xi;, and the partition size over [a', b'] by h. Suppose 0 is a family of functions
 over [a, b] and (E) is a pair of interpolating spline end conditions such that for each
 f e 9 and 21m e {21m} there corresponds a unique Sp (21m, 3)-interpolate, s, satisfying
 the end conditions (B), and there exist constants ie {4, 5,6}, K4,K5, * ,
 dependent on f but independent of m e {ltm} such that if fme Cr[a, b'] n) u where
 4 <r < r r an integer, then

 (2.1) max if 7-_ fjvs' _ <"_K hr-2.

 Then if fe Cr[a, b'] is u withf 4 ? r ? mn (5,fr), there exist constants {Kl}lb
 independent of but e {ewm} such that

 (i) max mfa- s_ ? K hr-lh
 io _ I _ if

 (ii) max If'(xi + 0.5h) -s'(x' + 0.5h)j ? K2hr-l,
 i?-i?z1 -1

 (iii) max If"(xi ? Ah)-s"(xt + h)I ? K3hrK2,
 ioI<i1 -i

 where A = (3 ? 3)j'6 _ 0.211 or 0.789,

 (iv) max If"'(xi + 0.5h) - s"'(xx + 0.5h)l ? K4hr3,
 in < i<i 1 -1
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 ERROR BOUNDS 573

 (v) max f, - _(s -s71) ? K hr-3
 i _+ <i_ij-l 2h

 In addition if fe Cr[a', b'] n R with 4 < r ? r, there exist constants {Kr}j6
 independent of 71m e {17m} such that

 (vi) max sf;' + si 1) < Kr(hs io+_ 12 i?1 + 1Of'+12 ?

 (vii) max fiV - -(si'?1 - 2s' + s- 1) Krhr-4,
 io+l_<i<il- _If h

 (viii) f7 - (14s"-5 s i io 12 io 5io+1 + 40Lo+2 -io+3) < K8hr-2,

 (viii)' f;'1 - (14s", - 5s71 - + 4s7" - s - S3) K" h 12 i 2 3 -
 Finally, if there exist constants Kr such that Kr < Krllf(r)1L[a',b] for all

 f Cr[a', b'] n , 4 < r < r, then there are constants {K,}1 independent of f
 such that

 K, ? K,f ( )ILdb[ab], 1 1 < 8.
 Proof. The final claim may be seen by inspection of the individual proofs.

 We begin with bound (i). Let io + 1 < i ? i1. Recall for comparison the spline
 identity (1.13). By a direct expansion about xi using Taylor's theorem, if
 f e Cn[a', b'], n = 4 or 5, then

 f'= 6(f'- - h2fi1) h (f,_ h fiv) + f , ' + Rn

 where JR 41? 6-1h3 fivL[x x] and R51 < 2Oh4 fv 1 L:[xl,- XJ]. Subtracting
 (1.13) from this expression and recalling that s interpolates f over 71m gives

 f - i - h2 * - s" +h(f - hflV - si') + RX.

 So for 4 < r < 5 and by the use of(2.1),

 s'l < rh + JRJ.

 A similar relation for i = io can be established using (1.13)'. Thus (i) is valid with
 K4= 0.5K4 + 6-1 fliv1L [a b] and K5 0.5K5 + 20-1 fv 1L-[a ,b]. Note that

 the use of Peano's theorem [5, p. 69] would have given a sharper bound on R4
 and RW, but as our interest is in the asymptotic rates for a wide variety of ex-
 pressions, we prefer the simplicity of Taylor's theorem.

 By a routine calculation using Taylor's expansion, for f e Cn[a', b'], n = 4 or

 5 and iO < i < iI - 1,

 f'(xi + 0.5h) = h-'(fi+ - fi) - (h/24)[f'+1 - (h2/12)f Nv

 ( (f - (h2/12)f'v)] + R ,

 where IR21 < KIhn-' If( II L?[a',b'] Hence (ii) follows by subtracting (1.14) from
 (2.2) and using (2.1) with Kr2 = 12'-Kr + KrI1f(r)IILo[a,,b] 4 ? r ? 5.
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 574 THOMAS R. LUCAS

 For bound (iii), if r = 4 the proof is straightforward. Suppose r = 5 and

 f E C5[a', b']. Let io < i ? i1 - 1. Since s" is linear between xi and xi, 1, for any
 A E [O, 1],

 (2.3) (1 - A)s' + As7?1 = s"(xi + Ah).

 By a Taylor expansion about x- = xi + Ah,

 (1 - A)(f -(h2/12)f'v) + A(f7?1 -(h2/12)f'v 1)

 f"(x) + 1 (6A(1 - A) - 1)h2fiv( ) + R5,

 where IR5 < Kh3 11 f () 11 L[a b'] But 6A(1 -A)- 1 = 0 if and only ifA = (3 + 3/)/6.
 Assigning either of these values to A, and subtracting (2.3) from (2.4) it follows
 from (2.1) that

 If"(x)- s"(x.)l ? h3(K5 + KI )h3K

 The remaining error bounds follow by similar arguments involving the use

 of appropriate spline identities and Taylor expansions. For example bound (iv)

 uses s"'(xi + 0.5h) = h-'(s"'+ -s'7) while bound (vi) may be derived from
 f'' = 12'1[f'1+1 ? lof;' ? f> - (h2/12)(f'v , + 1Of'V + fLv 1)] + Rn, where

 _RI Knh 2n211j (n) L[a,b] when f E Cn[a', b'], n = 4, 5 or 6.
 The formal expression (1.5) of Curtis and Powell suggests that the error

 bound (vii) of Theorem 1 might be strengthened for smoother f. In another
 direction, a better approximation for f ' is given.

 THEOREM 2. Suppose {21m}, R and (E) are as in Theorem 1 and in addition
 there exist constants r E {6, 7, 8}, L6, L7, ... , Lp independent of 71m E {17m} such
 that iff C r[a', b'] n) where 6 < r ? 'r, then

 max f -fiv +? fYi - s'' < L h'2.
 10?1?11l 12 360 r

 Then there exist constants C' and C' independent of 71m E {2nm} such that for
 fe Cr[a', b'] nF with 6 <r < 'r

 (i) max flV - (s"? -2s'' + si'-) < C'h-4
 io+1-i<il-1I h

 If 6 < r < min (7, r),

 (ii) max sf7'- (-st'+2 + 14s'+1 - 14s 1 + s"i-2 _ Crh-3.
 io+2?i<il-2 24h l

 Moreover, if there exist constants Lr such that Lr < LrI f(r)IIL-[a,b,] for all
 f ECr[a', b'] n , 6 _ r ? r, then there exist constants C'j and c2 independent of
 f such that

 (2.5) Cr ? -r || f (r) Lab'] and Cr C? 1 f(r Lra',b']-
 The proof is similar to that of Theorem 1 and is left to the reader.
 We end this section with a lemma which demonstrates that the bound (2.1)

 implies that the optimum spline error bounds for locally C4-smooth functions

 are valid in this setting. The locally uniform partition requirement on {7nm} is
 dropped.
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 LEMMA 1. Let a ? a' < a < ,B _ b' _ b, {21m} be a sequence of partitions of

 [a, b] with the first and last knots of 7m in [c, fi] being xi. and xi1, ; be a family of
 functions over [a, b] and (E) be a pair of interpolating spline end conditions. Suppose

 for each f E a and 7 E {21m} there is a unique Sp (7m, 3)-interpolate s satisfying (E),
 and a constant K4 independent of 2m E {21m} such that if f E C4[a', b'] n a then

 (2.6) max if ' - s7' _ K4h2. io-<i?ii

 Then there exist constants {M}10=o independent of me {21m} such that if
 feC4[a,b] n a,

 (2.7) IIDj(f(x) - s(x))II110[Xj0,Xj1] M h4j, 0 ? j ? 2.

 If K4 ? K4If( II LO[a,b] for all f E C4[a', b'] n a then there exist M3 with Mi
 _ M j ill 11 L??[a',b ]-

 Proof. By Taylor's theorem if f E C4[a', b'] and 0 < A _ 1,

 (2.8) (1 - {)fi + ,fi"' 1 = f "(xi + Ahi+ 1) + R ,

 where JR41 < (1/8)h2llf(4)lL[a' b]. Subtracting (2.3) from (2.8) and using (2.6)
 establishes (2.7) for j = 2 with M2 = K4 + (1/8)11 f4)MILKo[a',b']. Since fi -si = 0,
 io-< i < i1, and f - s E C2[xio, xi1], Lagrange's theorem gives

 II i- SIL[XIo,XI1] _ (1/8)h2 D 2(f _

 so (2.7) is valid for j = 0 with Mo = M2/8. The j = 1 case follows by Lemma 1
 of Kershaw [9].

 3. End conditions yielding high order error bounds for uniform partitions. In

 this section we shall identify some end conditions which lead to the results of
 Theorems 1 and 2 for sufficiently smooth functions. All partitions 7m of [a, b] in
 this section are assumed to be uniform with partition norm h. We begin with
 three lemmas.

 LEMMA 2. Let f E C'[a, b] for some n, 4 < n ? 6. Let 71m be a uniform partition
 of [a, b] and s some Sp (7r, 3)-interpolate off. Denote the expression f -(h2/12)f v
 -s"' by ei, 0 ? i ? m. Then

 (3.1) ei -1 + 4ei +ei +1 = ii 1 m i_ -1

 where IR'I _ Kh'-2 1f (') L[ab] and K is independent off and 7m.
 Proof. By Taylor's theorem, if 4 < n < 6,

 (3.2) -f _ h,1 f.v + 4(f -_ hfv) + - h fiv+l (3.2) 12 ~~~~~~~~~~~12fP -
 = 6h 2(_1 -2? i+1) + Rn, 1? i? m-1,

 where IRIj _ Khn - 2f(n) 1L-a,b] The result follows by subtracting (1.12)' from
 (3.2), where s is an arbitrary Sp (7tm, 3)-interpolate off. If desired a sharp K could
 be determined explicitly as a function of n by use of Peano's theorem. The next
 result follows by a similar argument.
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 576 THOMAS R. LUCAS

 LEMMA 3. Let f CE 0[a, b] for some n, 6 < n ? 8. Let 71m be a uniform partition
 of [a, b] and s some Sp (72m, 3)-interpolate of f. Denote the expression

 - (h2/12)f v + (h4/360)f -v - s

 by ej, 0 < i < m. Then

 -ei -I + 4-i+ ?i +I = &n < i _ m -1,

 where IRIl _ Khn- 211 f( 1 Llta,b.

 LEMMA 4. If A = {aij} is an m x m matrix and aii_ > Y 1 <
 < i, where 3 > , then IIA'I1,, - 1 '-

 Proof. Let ye ,Rm and x = A-'y. Then Ax = y and if I1xII,, = IxI
 m m

 laiixiI = - Z aijxj ? IIYII + Z laial IIxII,,
 j=l,j i j=lj*i

 so 3IIxI70, _ IyIll . and IIA- lyII.0 < 6-1 IIyIIK

 We first consider the model problem: periodic end conditions for periodic
 functions.

 THEOREM 3. Let f E Cn(- 00, ?O) n Cp[a, b] for some n, 4 < n < 8, and let s
 be the Sp (7tm, 3)-interpolate of f satisfying the periodic end conditions (1.8). If
 4 ? n < 6, then

 (3.3) max -f fV - S/ < K h -2If(r) IIL[arb], 4 ? r ? n.
 O_i<m 12

 If 6 ? n ? 8, then

 (3.4) max f,, - fiv + f- i - s' < K hr2IIf(r)IIL 6 ?]r ? n O?i?m 12 360 f -ab, 6<r<n

 The constants Kr are independent off and 7tm.
 Proof. Suppose 4 ? n < 6. Extending s periodically to (-Go, oo) we see

 from Lemma 2 that besides (3.1), we have emi, + 4eo + e1 = Rn where
 IRnoI ? Khn 2IIf t(n) , and em = eo, giving the matrix system

 4 1 0 0 * 1 eo Ro

 1 4 1 0 ... 0 e1 R

 1 * 0 1 4 em

 By Lemma 4, 11 ei X < 0.51I1RiIIx < .5Kh giving (3.3). A similar
 application of Lemma 3 gives (3.4).

 There is a "naturalness" about the periodic end conditions (1.8) that has no
 ready generalization to nonperiodic functions giving error bounds of the quality
 of Theorem 3. The most frequently appearing end conditions in the literature
 other than (1.8) are (1.7), (1.10) and (1.11), but even the best of these, (1.7), fails to
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 ERROR BOUNDS 577

 give an 0(h4) bound on (3.3) forf E C6[a, b]. This leads us to consider a number of

 new (as far as a literature search has been able to determine) end conditions, some

 of which seem to offer distinct advantages over the above ones. We also include

 several other choices that have been previously considered. (See Table 1.)

 TABLE 1

 Some cubic spline end conditions

 Ref. Label Left end condition O(hl)

 [12] HI so = (6h)-'(-I1so + 18s- 9S2 + 2s3) 4
 [3] H2 so-2s" + s" A2 St= 4
 * H3 A3so = ? 5
 * H4 A4So = ? 6
 [3] Fl s(a + O.5h) = f(a + O.5h) 4
 [4] F2 As(a + O.5h) = Af(a + O.5h) 5
 * F3 8s(a + 0.25h) - 9s(a + O.5h) + 8s(a + 0.75h) 6

 = 8f(a + 0.25h) - 9f(a + O.5h) + 8f(a + 0.75h)
 [1] DI so = 5 s

 * D2 Aso = Af 6
 [1] DD1 so =fo 4
 * DD2 so + 1Os" + s = 12f' 6
 * DD3 14so-5s" + 4s -S3 = 12ft 6
 * DD4 12s"=14f -f -f2 6
 * DD5 7s" + 46s+ 7s= + 56f t + 2ft 8

 These end conditions are classified as being homogeneous (H), dealing with
 function values (F), first derivative values (D) or second derivative values (DD).

 For brevity the conditions are stated for the left endpoint xo = a only, and a
 similar condition is assumed to hold at Xm = b. The left-hand column either
 references an early investigator of the end condition or indicates it is new by

 marking it with an "*". The right column gives the order of max If -(h2/12)f'v
 + (h4/360)fiY - s1'I for fe C8[a, b] which is to be determined shortly, and thus
 gives an indicator of the accuracy of the end condition. Except for F3 and D2

 these new end conditions should only be considered without modification when
 the first and last few partition points are uniformly spaced.

 The remainder of this section concerns the rate at which

 max If ' - (h2/12)f'v - s'l or max If' - (h2/12)f'v + (h4/360)f Y' - s"I

 goes to zero for sufficiently smooth f where s is the Sp (7tm, 3)-interpolate of f for
 a set of end conditions from Table 1. Any generic constants K used are independent
 of both the function being interpolated and the mesh norm.

 THEOREM 4. Let s be the Sp (7Cm, 3)-interpolate of f with end conditions Hi,
 H2, Fl or DD1. Iff E C4[a, b] then

 max f - fiv - si' < Kh2IIf'4'I L-[a,b]-
 O_i_m 12

 Proof. Clearly it suffices to show that max If -s'I < Kh2 1f(4) 11. But for
 the end conditions Hi and DD1 this has been established by Swartz and Varga
 [12] and for H2 and Fl by de Boor [3].
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 578 THOMAS R. LUCAS

 THEOREM 5. Let s be the Sp (7tm, 3)-interpolate off with end conditions H3, F2
 or Dl. Iff E Cn[a, b] for n = 4 or 5 then

 max f - f - i v < Kh
 O_i_m 12

 Proof. For each of the above end conditions in turn, let ei = f7 -(h2/12)f'i
 -s7, 0 < i ? m. Consider first H3. By an application of Taylor's theorem, if
 fe Cn[a, b] with n = 4 or 5 then A3[f ' -(h2/12)f 'v] = Rn with IRn I < Kh n - 2 1I (n) 11.
 Subtracting the left end condition H3 gives A3 eo = R n . A similar argument at b
 gives A3em3 = R n where JR n I< Khn - 2f(n) 11 These two equations together
 with the results of Lemma 2 give the matrix system

 1 -3 3 -1 0 -eo eR

 1 4 1 0 . 0 e1 Rl

 0 1 4 1 0 e2 R2

 (3.5) .... -

 0 1 4 1 0 em-2 Rm-2

 o 0 1 4 1 em R

 0 1 -3 3 -1 _em - RM

 Subtracting row 1 from row 2 and adding row m + 1 to row m in the above system
 gives a uniformly diagonally dominant (m - 1) x (m - 1) reduced system
 AE = K. Hence by Lemma 4, with 3 = 2, II E IK _ 0.51IRlxK < Kh? n - 2 11 f(n) II..

 Since leol < 5JJEKJx + IRn I by (3.1) with a similar bound for leml the result for H3
 follows.

 Now consider F2. By a double use of the spline identity (1.15) it follows that

 (3.6) s(a + 1.5h) - s(a + 0.5h) = 2 - h(s' -so 2 162

 By Taylor's theorem iff E Cn[a, b] with n = 4 or 5,

 f(a + 1.5h) - f(a + 0.5h)

 (3.7) f2 JOf_ h2(1, - hf2 -f (f - hfj) + Rn

 where IRnO < Kh . A subtraction of (3.6) from (3.7), use of the left end
 condition F2 and the interpolation property of s followed by a division by h2/16
 gives eo - e2 = Rn , where IRnI < Kh n- 21f(n) x,. The same bound holds for
 lem 2-eml so use of Lemma 2 gives a system like (3.5) with a modified first and
 last row. Again a matrix reduction allows Lemma 4 to be applied giving the result.
 The result for Dl follows easily from (1.13)' without requiring matrix reduction.

 It is interesting to compare the three homogeneous end conditions Hi, H2
 and H3. If the spline identities (1.13)' and (1.12)' are applied to H1 it may be seen
 that Hi is a linear combination of H2 and H3 in the proportion 9 parts of H2 to
 -2 parts of H3. Since H 1 is as computationally involved as H3 but is contaminated
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 by the lower order error of H2, it would seem that the use of either H2 or H3
 should be preferred.

 One example of such an application would be the use of collocation tech-
 niques over Sp (nm, n + 3) to approximate the solution of the nonlinear two-
 point boundary value problem

 D nU =f (X, U.. ........ . u(,!-l a a< x < b,

 with boundary conditions

 n-1

 [aiju(j)(a) + biju()(b)] = 0, 1 < i < n,
 j=O

 where Sp0 (7rm, n + 3) is the space of Cn+2[a, b] polynomial splines of degree
 n + 3 in each subinterval of 7tm which satisfy the boundary conditions. In this
 setting the basic collocation equations are simply

 (3.8) Sn) = f(xi,Si, Sn , ), 0 ? i < ml

 for s e Sp0 (7tm, n + 3). To have an algebraically well-defined problem, two
 additional conditions are required. Since the error analysis of collocation methods
 using (3.8) involves the study of uniformly bounded projectors taking any
 g E C[a, b] into some Sp (7tm, 3)-interpolate of g (see Lucas and Reddien [11]) any
 of the end conditions of Table 1 which are feasible in this setting could be con-
 sidered. This would evidently include at most Hi - F3. In [11] the projector
 corresponding to H1, Pk, was studied, and it was shown that if u e Cn 4[a, b],
 then

 (3.9) IlDj(u - S)11L[at,b] _ Kjh4 0U( IIL[a b], ? < j < n.

 Apparently H2 would give similar accuracy but with a simpler band matrix, and
 H3 would give smaller constants in (3.9) and hence superior accuracy with a
 matrix of the same band type as in the H1 method. Some numerical experi-
 mentation with H3 in place of Hi has confirmed this expectation for a specific
 second order problem with an order of magnitude improvement for the error
 in u" - s". First derivative error was improved somewhat and the error in function
 values was not changed appreciably. This seems consistent with the published
 results in Tables 2.1 and 3.1 of [11] and the remark following them concerning
 the Pk projector.

 THEOREM 6. Let s be the Sp (7rm, 3)-interpolate off with end conditions H4, F3,
 D2, DD2, DD3 or DD4. Iff e Cn[a, b] for n = 4, 5 or 6, then

 f f h -l2 fi-. h - 2 11 f (n) l max f'-flv - siI <Kh
 O?i?m 12 =0 ab3

 Proof. The technique of proof is that of Theorem 5. In general it consists of
 establishing a Taylor's theorem result related to the given end conditions, after
 possibly transforming them by the use of spline identities. Then Lemma 2 is used
 in combination with these results to give a m-atrix system differing from (3.5)
 only in the first and last rows. After possibly performing a matrix reduction, the
 results will follow by Lemma 4. The details are omitted.
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 COROLLARY. Let s be the Sp (7rm, 3)-interpolate of f with any of the end con-
 ditions of Theorem 6. If fcE C6[a, b], then

 max fiV + hf Yi s-' ?_ Kh4IIf6)IILt[a,bI.
 O_i<m 12 360

 It is possible to develop end conditions of increasingly high order by general-

 izing or combining together lower order end conditions in appropriate ways. We

 end this section with a particularly simple 8th order method.

 THEOREM 7. Let s be the Sp (TCm, 3)-interpolate of f with end conditions DD5.

 Iff E Cn[a, b] for n = 4, 5 or 6, then

 (3.10) max f - fiV - si' < Kb]
 O?i?m 12 =

 Iff C Cn[a, b] for n = 6, 7 or 8, then

 (3.11) max f - f V + f Yi - sI' < Khn2II f(n
 O?i<m 12 360 l

 Proof. Assume f C Cn[a, b], where n = 6, 7 or 8. Denote the terms on the

 left of (3.11) by ei as in Lemma 3. By Taylor's theorem,

 7 o-- +- 36 + 460f h2f + h4f -f\l f 12 f h6 f 6f 12 ?360J1
 (3.12) \12V

 + 7 ff _ h iv + f =2f'o + 56ft? + 2f2 + Ron

 where IRnl _ Khn-2?jf(n lx,. Subtracting DD5 from (3.12) gives 7eo + 46e1
 + 7e = Rn.Likewise7em2 + 46nmK ? 7em = Rn,whereIR)ll?.
 The bound (3.11) follows by use of Lemma 3 and, after a matrix reduction, Lemma
 4. The error bound (3.10) may be derived in a similar way.

 4. Error bounds for locally smooth functions over locally uniform partitions.

 The following local convergence theorem gives conditions under which the

 hypotheses of Theorems 1 and 2 are satisfied for a certain Sp (7tm, 3)-interpolate
 of an arbitrary bounded function which is smooth inside a subinterval where the
 partitions are locally uniform. While a specific low order end condition is used
 for the spline interpolation, it should be clear that the results are not sensitive to
 this choice.

 THEOREM 8. Let a ? a' < c < ,B < b' ? b. Suppose f is a bounded function
 over [a, b] with f E Cn[a', b7] for some n, 4 < n < 8. Let a > 1 and 7t be any partition
 in P0[a, b] such that i restricted to [a', b'] is uniform with partition size h. Let s be
 the Sp (7r, 3)-interpolate off with end conditions s"(a) = s"(b) = 0. Then there exists

 a constant Cn dependent on f but independent of i such that

 (4.1) max hf'- f'.V sX' <Ch-2 if 4?n_6,
 io_i-<ill 12
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 and

 (4.2) max |f' flv + fYi S' < Cnhn-2 if6 n 8, _ _<i 12 360 i

 where xio is the first point of rc in [oc, f] and xi, is the last. Moreover,for n = 4, the
 bound (4.1) is valid for arbitrary 7r e Pg[a, b] with h = max hi.

 Proof. Let g be any function in C4[a, b] n Cn[a', b'] such that f(x) = g(x) for

 all x e [a', b']. Let III ai 1II = max {Iail: io < i ? i1 } and sg be the Sp (7t, 3)-interpolate
 of g satisfying sg(a) = sg(b) = 0. Then

 fi h2fiV _ H < f- h I fV - (,- __ h2i

 (4.3)2
 + lg; - hg2V (s i + III (Sg)" - s7i'I

 The first term on the right side of (4.3) is zero. We now show that the second is

 of the right order.

 Suppose 4 ? n < 6. Letting ai = hi/(hi + hi+ 1) and bi = 1 - ai, by Taylor's
 theorem,

 ai g'' _h 1 + 2 iN- _ g'v + b - i

 (44) 6 gi+- gi gig 1<i <m-1
 hi + hi+ I hi+ I hi _

 where JRIj _ K< h2 11iv 1L-[a,b] . Moreover if xi e (a' + h, b' - h), then

 1IRn < K2 hn -2 11f(n) L?ab.

 Finally, letting

 R= a (go - gb0v), Rm = bm-1(gm - gmg)

 and

 ei = g7 - _ (sh)2, O _ < m,
 12

 it follows from (1.12) that

 2 b1 2Rn

 a2 2 b2 e2 Rn

 (4.5) ...= a3 2 b e3 Rn3

 am22 bm2 em-2 m-2

 am-1 2 em- I Rm_1 Rm
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 By an inequality of Kershaw [8], writing (4.5) as AE = B, the elements of
 = {aj '} are bounded by

 (4.6) Ia-'I < 4(0 5)1i-jl+ 1 l < i,j < m -1

 Therefore, letting A = min {oc - a', b' -

 <lleilll _2K2h n -f (n)IILEa' b l + o.5[A/h](16/3) JIBI K

 where [.] is the greatest integer function. Since (0.5)[Alh]h-k -+ 0 as h -+ 0 for any
 k, it follows that Illeilll < Kh-2.

 We now consider the last term in (4.3). Let r(x) = sg(x) - s(x). Then r'6
 = r" = 0. By the spline identity (1.12),

 airf' + 2r" + bir'l

 (4.7) 6 rri+ I- ri ri -ri_-l, i m1
 (47) h, 6 Lri+~ r~ - r~ h~j' 1 ? i ? m - 1. hi +hi+ I hi+ 1 hi

 Denoting the right side of (4.7) by ci, max Icil ? Kh 2 since hi < ah and f and g
 are both bounded. Also Illcilll = 0. Another application of (4.6) thus gives for
 io _ i < il,

 2 m1 16
 Ir"I < - E (0.5)i- jllcjl _ _(0.5)[A/h]Kh - 2.

 j=l

 Thus Illri'lll < Kh-2 giving (4.1). The proof for (4.2) is similar.
 COROLLARY. Let a < a' < ot < f < b' ? b and f be a bounded function over

 [a, b] with f E C4[a', b']. For any 7t e Pg[a, b] with h sufficiently small if s is the
 Sp (7t, 3)-interpolate of f satisfying s"(a) = s"(b) = 0, then

 IlDj(f - s)J?a] < Kh4j, 0 ? j ? 2.

 K is dependent on f but independent of 7t.

 Proof. By Theorem 8 if a ? a' < a" < oc < / < b" < b' < b, for any xi cE
 with xi E [a", b"], If' - s'I < Kh2 But for h sufficiently small, the first and last

 partition points of [a", b"], xi. and xi1, will be such that a" < xi. < c < B < xi
 < b". The result follows by Lemma 1.

 Kammerer and Reddien [7] have established a similar result, but they re-
 quired that either t E P1 [a, b] or f E C' [a, b].

 5. A numerical example. We will illustrate these results by giving a variety
 of errors for interpolating cubic splines with end conditions DD1, Dl, F3 or
 DD5. Note these end conditions are of order 4, 5, 6 and 8. The function
 f (x) = ex cos 5x will be interpolated over [0, 1] with the uniform partition spacing
 h = 0.05. The approximate rates of decrease of the error, O(h'), where cG is com-
 puted from the observed decrease in the error from h = 1/16 to h = 1/20, is given
 in parentheses. (See Table 2.)

 The set 7T20 = {partition points}, M = {midpoints} and L = {midpoints
 + h//12}. Table 3 illustrates the great improvements possible in estimating
 f", f."' and fiV at the partition points by use of finite difference operators and
 higher order end conditions such as F3 or DD5.
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 TABLE 2

 L' and point errors and rates with four end conditions

 h=0.05 DDI DI F3 DD5

 Ilf SIIL-[o,1i 0.000039(4.10) 0.000025(3.99) 0.000025(4.02) 0.000025(4.03)
 Ilf' s 'IIL-[o,1I 0.00292 (3.10) 0.00150 (2.99) 0.00149 (3.02) 0.00149 (3.02)
 If" - s"IIL-[O,1I 0.317 (2.03) 0.313 (2.03) 0.314 (2.03) 0.314 (2.03)
 max If'(x) - s'(x)l 0.00292 (3.10) 0.000248(3.66) O.000205(4.01) 0.000250(4.01)

 XE7t2OUM

 max If"(x) - s"(x)I 0.149 (2.10) 0.0131 (2.56) 0.0118 (3.01) 0.0138 (2.95)
 XeL

 maxIf"'(x) - s..'(x)I 5.33 (1.11) 0.606 (2.01) 0.606 (2.01) 0.646 (1.82)
 xeM

 TABLE 3

 Derivative errors and rates at knots using finite difference operators

 h =0.05 DDI DI F3 DD5

 max f'
 1 _i< 19

 S,+I + IOS, +S, I] 1 0.0255(2.08) 0.00161(2.79) 0.000869(3.96) 0.000736(3.94)
 12

 max f
 2 <i< 18

 _-si2 +14(sI- s>1) + I-2 0.689(0.970) 0.0652 (2.32) 0.0171 (4.04) 0.0171 (4.02)
 24h

 max f iv
 1 _i_ 19

 sjR -_ 2s' +S,~ I | 4119. (0.008) 11.2 (1.02) 2.39 (2.08) 0.0107 (3.78)

 In all cases the rates of decrease are, to the closest integer, those given by Theorems
 1 and 2 in conjunction with Theorems 4, 5, 6 and 7.

 6. Conclusions. From ?? 2 and 3 we have seen that for partitions 7c E P1[a, b]

 and families a of periodic functions the periodic end conditions (1.8) give Sp (7c, 3)-
 interpolates of smooth functions f which yield approximations of f', f ", f."' and
 f iv of order up to 0(h4) at selected points. Moreover if the end conditions are
 chosen carefully these same results generalize to nonperiodic functions. In ?? 2
 and 4 it was shown that these approximations are locally valid for general par-

 titions 7i E P,[a, b] and bounded functions at certain points inside regions where
 the partitions are all locally uniform and the function is in a high order local
 smoothness class.
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