QUADRATICS AND PARABOLAS

GENERAL INFORMATION

For year levels: 10, 11, 12

Background/Description:

Perfect Squares are produced by squaring a single term. This can be either a number or an expression. When it is an expression we end up with a type of quadratic of the form:

$$
\begin{gathered}
(x+a)^{2}=x^{2}+2 a x+a^{2} \text { or } \\
(x-a)^{2}=x^{2}-2 a x+a^{2}
\end{gathered}
$$

This activity explores the properties of this family of functions and their graphs, known as parabolas.

This activity covers the following Australian Curriculum - Mathematics Content:
Expand binomial products and factorise monic quadratic expressions using a variety of strategies (ACMNA233)

Explore the connection between algebraic and graphical representations of relations such as simple quadratics ... using digital technology as appropriate (ACMNA239)

Solve simple quadratic equations using a range of strategies (ACMNA241)

EXPLORING PERFECT SQUARES

1) If you do not already have a copy of Geogebra on your device, download it here. For PC's and Macs the Classic 5 is recommended. This software is free and by downloading the prepared files you do not need to worry about internet speeds.
2) Download and open the Geogebra applet: Exploring Perfect Squares
3) Read through and follow the instructions on the left side of the page.

Use the checkboxes to progressively show more sections of the applet.
4) Enter a value for a.

Write down the resulting equation. (Drag the red point down to show it.)
5) Explain the effect of changing the value of \mathbf{a} :

When \mathbf{a} is positive \qquad
When \mathbf{a} is negative \qquad
Drag the red point down until the next section appears.
6) Change the value of x by dragging the blue point. What effect does this have on the line segments?

Drag the red point down until the next section appears.

There will be some text and a square at the bottom of the screen. (Scroll down if you can't see it.)
7) Draw an example of the square for one value of \mathbf{a}, say $\mathrm{a}=\mathbf{2}$.
8) What do the coordinates of the red point on the graph represent?
9) Describe the motion of the red point as you change the value of x (drag the blue point as before.)
10) Draw the parabola formed by a square of side length $\mathrm{x}+2$.
11) Use integer values of a between -5 and 5 and describe the effect on the parabola.
12) What does the factor form of a quadratic tell us about the turning point of the parabola that can be drawn from it?
13) Now download and open the Am I a Perfect Square? applet to practice what you have learned and find out more.

FURTHER INFORMATION

