Triangle rectangle : Égalité de Pythagore

I. Définition-Vocabulaire

Définition 1:

Dans un triangle rectangle, *l'hypoténuse* est le côté du triangle opposé à l'angle droit.

Remarque 1:

⇒ L'hypoténuse est toujours le côté le plus long.

II. Théorème & Application :

Propriété 1:

Théorème de Pythagore :

Si un triangle est rectangle, alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

Exemple 1:

Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse)

⇒ Alors BC²=AC²+BA².

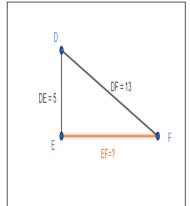
PYTHAGORE

Exemple 2:

Soit DEF un triangle rectangle en E,

EF=5 et FD =13 , que vaut la mesure de [DE]?

On sait que le triangle DEF est rectangle en E.


[DF] est l'hypoténuse.

D'après le théorème de Pythagore,

on a
$$DF^2 = ED^2 + EF^2$$

d'où
$$13^2 = 5^2 + ED^2$$

$$ED^2 = 169 - 25 = 144$$

Pour trouver la longueur de DE, il faut chercher le nombre positif qui au carré vaut 144.

Remarque 1:

Le théorème de Pythagore sert à calculer une longueur lorsque l'on connaît 2 côtés.

III. Racine carrée:

Définition 1:

Soit un nombre a positif. \sqrt{a} est le nombre positif dont le carré vaut a.

Dans l'exemple précédent $DE^2 = 144$ donc $DE = \sqrt{144} = 12$

Exemple 1:

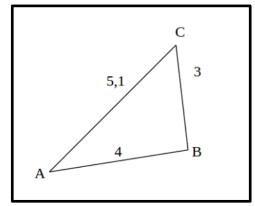
$$5^2 = 25 \text{ donc } \sqrt{25} = 5$$
.

PYTHAGORE

Définition 2:

On appelle carré parfait, un nombre entier positif dont la racine carrée est entière.

Nombre entier	1	2	3	4	5	6	7	8	9	10	11	12
Carré Parfait	1	4	9	16	25	36	49	64	81	100	121	144


IV. Déterminer si le triangle est rectangle ou non

Exemple 1:

Soit un triangle ABC tel que AB=4, BC =3 et AC=5,1.

Le triangle est-il rectangle?

On sait que [AC] est le côté le plus long donc pourrait être l'hypoténuse. Calculons d'une part AC² et d'autre part AB²+CB²

