6.9 TEOREMA DE LA PARALELA MEDIA EN UN TRIÁNGULO

Demostración.

TEOREMA 39. Paralela media de un triángulo.

- i) El segmento que une los puntos medios de dos lados de un triángulo es paralelo al tercer lado y tiene por medida su mitad.
- ii) Si por el punto medio de un lado de un triángulo se traza una paralela a un lado, dicha paralela biseca al tercer lado.

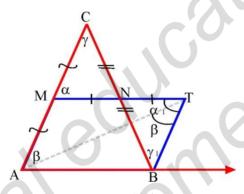


Figura 105.

i) Sean M y N puntos medios de \overline{AC} y \overline{CB} respectivamente.

Demostremos que: $\overline{MN} / / \overline{AB}$ y que $MN = \frac{1}{2}AB$.

Prolonguemos \overline{MN} tal que: $\overline{MN} \cong \overline{NT}$.

Los triángulos $M\stackrel{\triangle}{N}C$ y $T\stackrel{\triangle}{N}B$ son congruentes por L-A-L.

Luego los ángulos:

$$\alpha = \alpha_1$$
 (1)

$$\gamma = \gamma_1 \tag{2}$$

$$CM = BT$$
 (3)

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Pero de (1), las rectas \overrightarrow{TB} y \overrightarrow{CA} son paralelos por hacer ángulos alternos congruentes con la secante \overrightarrow{MT} .

Determinemos \overline{AT} , entonces $\hat{\beta} \cong \hat{\beta}'$ por el teorema recíprocos de los ángulos alternos internos; y por lo tanto $\Delta AMT \cong \Delta TAB$.

En consecuencia:

$$MT = AB$$
 (4)

$$M\hat{T}A \cong T\hat{A}B$$
 (5)

Y así como N es un punto medio de \overline{MT} entonces de (4) se concluye que $\overline{MN} = \frac{1}{2}AB$ y de (5) por el T. \angle A. I. se concluye que $\overline{MN}//\overline{AB}$.

ii) Sea el triángulo $\stackrel{\triangle}{ABC}$, M punto medio de $\stackrel{\frown}{AC}$. $\stackrel{\frown}{MN}$ // $\stackrel{\frown}{AB}$, por N tracemos una paralela a $\stackrel{\frown}{AC}$. Tenemos: $\stackrel{\triangle}{MNC} \cong T\stackrel{\triangle}{BN}$ ya que: $\stackrel{\triangle}{CMN} \cong N\hat{T}B$, $\stackrel{\triangle}{ACB} = \stackrel{\triangle}{BNT}$ (por correspondientes) y AM = NT = MC. Entonces, CN = NB.

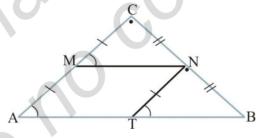


Figura 106.

COROLARIO.

En todo triángulo rectángulo la mediana relativa a la hipotenusa es la mitad de la hipotenusa.

Demostración.

 \overline{AM} mediana del triángulo rectángulo $\stackrel{\wedge}{BAC}$, con ángulo recto $\stackrel{\wedge}{CAB}$.

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Sea D el punto medio de AB, entonces por teorema anterior $\overline{MD}/\!/\overline{CA}$ y por lo tanto $M\hat{D}B$ es recto.

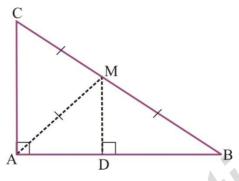


Figura 107.

Luego el triángulo $\stackrel{\triangle}{AM}B$ es isósceles. $\stackrel{\triangle}{MAB}\cong \stackrel{\triangle}{MBA}$. De aquí concluimos que: $\overline{AM}\cong \overline{MB}$ y como M es punto medio de \overline{BC} se tiene que: $\overline{AM}\cong \overline{BM}\cong \overline{MC}$.

TEOREMA 40.

Si el pie de una mediana de un triángulo equidista de los vértices, el triángulo es rectángulo.

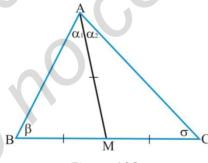


Figura 108.

Demostración.

Sea \overline{AM} la mediana relativa a \overline{BC} y además $\overline{BM}\cong \overline{MC}\cong \overline{AM}$. Demostremos que el ángulo A es recto.

Como $\overline{BM} \cong \overline{AM}$, AMB es isósceles y por lo tanto: $\beta = \alpha_1$.

Como $\overline{MC} \cong \overline{AM}$, $A\stackrel{\triangle}{M}C$ es isósceles y por lo tanto: $\alpha_2 = \gamma$.

Luego:
$$\alpha_1 + \alpha_2 = \beta + \gamma = 180 - m(\hat{A})$$
. Pero $m(\hat{A}) = \alpha_1 + \alpha_2$.

Por tanto:
$$m(\hat{A}) = 180 - m(\hat{A})$$

$$\therefore 2m(A) = 180^{\circ} \text{ y } m(\hat{A}) = 90^{\circ}.$$

TEOREMA 41. Relación 30°-60°-90° en un triángulo rectángulo.

Un triángulo rectángulo tiene un ángulo con medida 60° (respectivamente 30°) sí y sólo si uno de los catetos es igual a la mitad de la hipotenusa.

Demostración

Sea $\stackrel{\triangle}{ABC}$ con $\stackrel{\triangle}{CAB}$ recto y $m(\stackrel{\triangle}{ACB}) = 60^{\circ}$. Ver figura 109.

Designemos por M el punto medio de la hipotenusa BC y determinemos la mediana \overline{AM} , luego $\overline{AM} \cong \overline{MC}$ por el corolario del teorema de la Paralela Media y en el triángulo isósceles ABC, $m(M\hat{A}C) = m(A\hat{C}B) = 60^{\circ}$.

Luego por la suma de los ángulos interiores en el ΔAMC , se tiene que $m(A\hat{M}C)=60^{\circ}$, esto equivale a afirmar que este triángulo es equilátero y en consecuencia $\overline{AM}=MC=AC$, concluyéndose que $AC=\frac{1}{2}BC$.

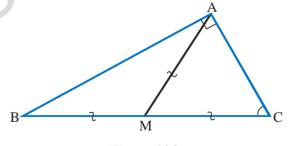


Figura 109.