Actividad: "Explorando el Campo Eléctrico con GeoGebra"

Introducción al Electromagnetismo

Contexto

Un desfibrilador aplica un campo eléctrico uniforme de 500 N/C horizontalmente para mover una carga de 2 μ C. El trabajo eléctrico se calcula como W = q E · d, donde E · d es el producto escalar entre el campo eléctrico (E) y el desplazamiento (d).

Instrucciones

Fórmula: $W = q E \cdot d$.

1. Configuración en GeoGebra

- Define los vectores:

```
Campo eléctrico = Vector((0,0), (500,0))
```

Desplazamiento = Vector((0,0), (0.02,0.01)

2. Cálculo del trabajo - Con q = 2×10^{-6} C, calcula: W = q (E · d) en joules.

Exploración

- Modifica el vector D:
- Paralelo: D = Vector((0,0), (0.03,0)).
- Perpendicular: D = Vector((0,0), (0,0.03)).
- Calcula el producto escalar y el trabajo en cada caso

-	Res	po	nd	e:
---	-----	----	----	----

- ¿En qué caso el trabajo es mayor? ¿Por qué?
- ¿Qué sucede si el desplazamiento es perpendicular al campo?

5. Reflexión

- Escribe una conclusión (máximo 100 palabras) sobre cómo el producto escalar ayuda a entender el trabajo eléctrico en un desfibrilador. Considera la dirección de los vectores y su relación con la vida real.

Hoja de trabajo

1. Producto escalar inicial (E = (500, 0), d = (0.02, 0.01)):

$$\mathbf{E} \cdot \mathbf{d} = \underline{}$$

Trabajo: W = _____ J

2. Resultados al modificar:

$$- d = (0.03, 0)$$
: E $\cdot d = ____, W = ____ J$

-
$$d = (0, 0.03)$$
: $E \cdot d = ____, W = _____ J$

- 3. Preguntas:
 - ¿En qué caso el trabajo es mayor? ¿Por qué?
 - ¿Qué sucede si el desplazamiento es perpendicular al campo?
- 4. Conclusión: