Escuela de Ciencias de la Educación Departamento de Matemáticas y Estadística	Hoja de trabajo No. 3	Temas: EDO LINEALES
Metodología:	Recursos:	Fecha:
Actividad matemática.	Lápiz, papel, GeoGebra,	Semana 8
Explorar, formular preguntas,	Recursos Educativos	Ana María Velásquez G
conjeturar y validar.	Abiertos (REA).	

ENFOQUE DE COMPETENCIAS

¿Cómo pongo en juego los conocimientos que he adquirido?

¿Qué problemas puedo resolver con esos conocimientos?

INSTRUCCIONES.

Atienda la presentación preliminar del profesor, que le dará pautas para desarrollar el plan de trabajo.

MOTIVACIÓN.

La mayoría de los problemas que se resuelven con *Matemáticas aplicadas* se aproximan inicialmente con un modelo lineal del tipo Ax = b, para el cual se cuenta con resultados teóricos estructurados, que facilitan la comprensión del problema y los primeros acercamientos a las posibles soluciones. Este tipo de modelo tiene la ventaja adicional, muy relevante hoy en día, de facilitar implementaciones computacionales altamente eficientes. Ya en la práctica, atendiendo a los comportamientos reales de los fenómenos estudiados, el modelo se corrige introduciendo los posibles *factores de error*, que también son estudiados desde diferentes perspectivas teóricas, y admiten experimentaciones numéricas que, en la actualidad, arrojan grados de precisión sumamente confiables.

EDO lineales.

1. En el contexto y = y(x), $x \in I$, una EDO lineal de orden n tiene la estructura: $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + a_{n-2}(x)y^{(n-2)} + \cdots + a_1(x)y' + a_0(x)y = g(x)$

(Si g(x) = 0 se dice que la ecuación es **homogénea**).

- a. Describa con sus palabras las características de las ecuaciones lineales. R/ Son aquellas en las que la variable dependiente y sus derivadas son lineales (es decir no está elevada a otras potencias distintas a 1), además sus soluciones deben ser LI y pueden obtenerse otras soluciones mediante combinaciones lineales de dichas soluciones LI.
- Revise las EDO de primer orden con las que usted haya trabajado hasta el momento (por lo menos 5 casos concretos) y clasifíquelas como lineales y no lineales.

R/

•
$$y' = \sqrt{x - y}$$
 No lineal

•
$$y' = \frac{2y}{1+y^2}$$
 No lineal

•
$$y' = \sqrt[3]{y}$$
 No lineal

c. Escriba tres ejemplos de EDO lineales (orden 2, 3 y 4, respectivamente) y tres ejemplos de EDO no lineales explicando, en los últimos casos, dónde falla la linealidad.

Lineal

•
$$3xy''' + x^3y'' + e^x y' = 0$$

•
$$\sqrt{5x} \frac{d^4y}{dx^4} + 6x \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + lnx \frac{dy}{dx} = 6x^2$$

No lineales

- x²(y")²+2xy'+3y=cos(xy²) Falla la linealidad ya que la variable dependiente y una de sus derivadas no son lineales (están elevadas al cuadrado)
- 3xy"+ x³y" + ex y'+y³=0 Falla la linealidad debido a que la variable dependiente está elevada al cubo.
- $\sqrt{5x} \frac{d^4y}{dx^4} + 6xy^2 \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \ln y \frac{dy}{dx} = 6x^2$ Falla la linealidad debido a que la variable independiente está elevada al cubo y está afectada por un logaritmo natural.

2. Con toda EDO lineal de orden n, de coeficientes reales, se puede asociar un polinomio de grado n:

$$P(r) = a_n r^n + a_{n-1} r^{n-1} + a_{n-2} r^{n-2} + \dots + a_1 r + a_0$$

que, de acuerdo con el *Teorema Fundamental del Álgebra*, podrá factorizarse en la forma:

$$P(r) = a_n(r - r_1)(r - r_2)(r - r_3) \dots (r - r_n)$$

donde, en general, $r_i = a + bi$ es una raíz compleja.

- a. Construya 4 ejemplos de polinomios (de grado 1, 2, 3 y 4, respectivamente), en la forma factorizada, con raíces reales solamente (b = 0).
 - i. Asocie, con cada ejemplo, la respectiva EDO lineal homogénea.
 - ii. Verifique, en cada ejemplo, que para cada raíz r_j la función $y(x) = e^{r_j x}$ satisface la ecuación respectiva
- b. Construya dos ejemplos de polinomios (de grado 2 y 3, respectivamente), en la forma factorizada, combinando raíces reales y raíces con parte imaginaria distinta de cero. Repita los procesos i y ii del ítem anterior.
- c. Explique, en sus palabras, por qué es intuitivamente razonable suponer que las funciones exponenciales son soluciones de EDO lineales homogéneas.
- 3. Con toda EDO lineal de orden n, de coeficientes reales, se puede asociar un *operador* de *dimensión* n:

$$L = a_n D^n + a_{n-1} D^{n-1} + a_{n-2} D^{n-2} + \dots + a_1 D + a_0$$

donde D es el operador diferencia $\frac{1}{dx}$. Por ejemplo, la EDO 2y'' - y' + 3y = x + 5 se escribe en *lenguaje de operadores* como L(y) = x + 5, con

$$L = 2D^2 - D + 3$$

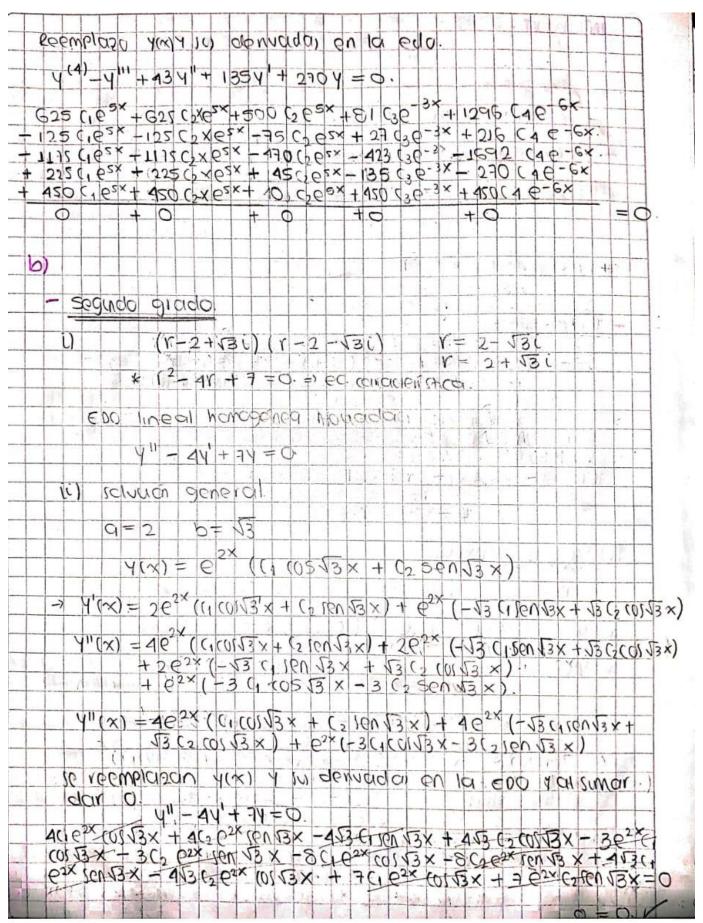
- a. Reescriba en el lenguaje de operadores los ejemplos de EDO lineales que ha construido en los puntos anteriores de esta hoja de trabajo.
 - $y' = -2xy \rightarrow L(y) = 0 \text{ con } L = D + 2x$
 - $xy' = 2y \rightarrow L(y) = 0 \text{ con } L = x D-2$
 - $x^2y'' + 2xy' + 3y = \cos x \rightarrow L(y) = \cos x \cot L = x^2 D^2 + 2xD + 3$
 - $3xy''' + x^3y'' + e^x y' = 0 \rightarrow L(y) = 0 \text{ con } L = 3xD^3 + x^3D^2 + e^xD$
 - $\sqrt{5x} \frac{d^4y}{dx^4} + 6x \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \ln x \frac{dy}{dx} = 6x^2 \implies L(y) = 6x^2$

con L=
$$\sqrt{5x}$$
 D⁴ +6x D³ + D² + lnx D

- $y''' 3y'' 4y' + 12y = 0 \rightarrow L(y) = 0 \text{ con } L = D^3 3D^2 4D + 12$
- $y^{(4)} y''' 47y'' + 45y' + 450y = 0 \rightarrow L(y) = 0$ $con L = D^4 - D^3 - 47D^2 + 45D + 450$
- $y'-4y=0 \rightarrow L(y)=0 \text{ con } L=D-4$
- $y''-y'-6y=0 \rightarrow L(y)=0 \text{ con } L=D^2-D-6$

- b. Muestre que el operador $L=a_nD^n+a_{n-1}D^{n-1}+a_{n-2}D^{n-2}+\cdots+a_1D+a_0$ satisface las propiedades de linealidad que usted aprendió en el estudio de transformaciones lineales en su curso de álgebra lineal.
- c. Muestre que el *Núcleo de L:* $N_L = \{y: L(y) = 0\}$, conjunto de soluciones de la EDO homogénea asociada a L, es un *Subespacio vectorial* del espacio de funciones n veces derivables.

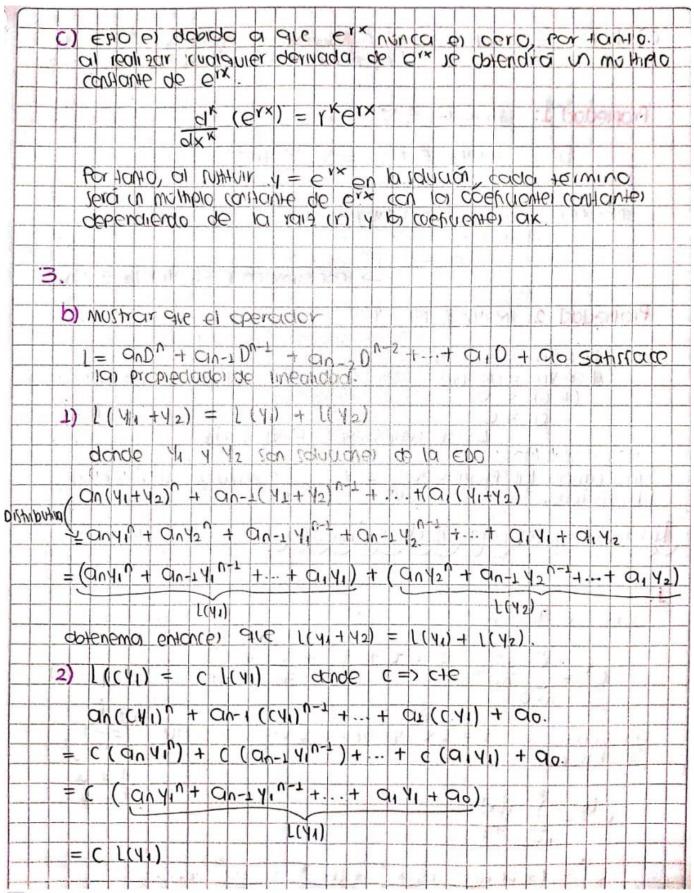
Resolución y formulación de problemas

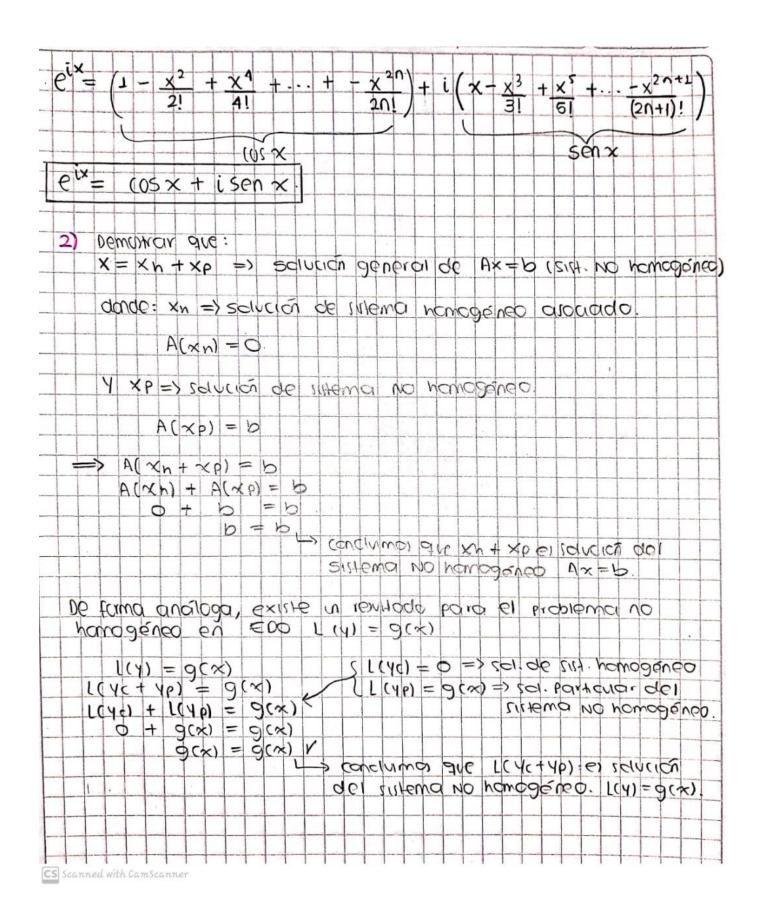

1. Utilizando propiedades de las potencias de la unidad imaginaria i y combinando adecuadamente las series de Taylor de las funciones e^x , $\cos(x)$ y sen(x), reconstruya el siguiente resultado:

$$e^{ix} = \cos(x) + isen(x)$$
.

2. Escriba una prueba del siguiente resultado estudiado en álgebra lineal: La solución general del Sistema de Ecuaciones Lineales no homogéneo Ax = b, se puede escribir como $x = x_h + x_p$, donde x_h es la solución general del sistema homogéneo asociado y x_p es una solución particular del sistema no homogéneo. ¿Usted considera que existe un resultado análogo para el problema no homogéneo en EDO L(y) = g(x)? Explique sus consideraciones e intuiciones.

		Ì	190	10	6	Trok)	0	3.		-			E			-		1	+
	4-12		192		1				-			-	+	-	1	-	-	-	-	-
(a.a)	Grac	10				+	-				-			-			10			1
3.01																			+	1
()			A =													13			-	-
		4 -	44	= (9.	=>	€ĺ	0	ly	1601	V	CM	09	én@	a	Ol	bu	ode	λ.	
i)sc	lucion	deve	ral		-	++			-		-			ah.	+	-		-	+	-
		Y(x) =		16	4×				-		-		-		-			1	
	,				1 0		v -									1			1	
		4.0	x) =	2	C	16,	-	=)	10	16	6	M	PIC	y 5 C). (5V	la	er	00.	-
	4 (16	44	= 0.		4	×							8		I	11			1	
	4 (16	247 -	- 4 (CI	€.	10	= (0	V	/		7		-	1	1	H	+	+	-
a. b)	Condo	12								-			2		K	1,,		4	7	
	61090																			
i)_	(1-	3)(Y++ =-	1	= (1			+		-		+	-		10		-		£
14 +			-		Ţ		1					-	1	7 2	T	10		1	of i	
- 12		+2Y.	r -	6	= (5.)	e	cuc	رررخ	n	COI	ac	ten	Sh	0				7
	€00	INPO	d ho	200	301	1001	0	Soi	icid	a :	-		4	7	-		`	-		
					-			300		1			1		t			1	1	
4 4	4	"-	!'-	PA	=	O.			2		12			- 1	1	-		+	+	-
ii)	sel.	gene	ral:							10	E	1							1	1
	1	(%)	= ((1)	S 17	* +	2 6	2 6	127	<	-		+	-	+		\vdash		1	1
	- 4	(x)	= C ₁	6	3×	+ (2 6	7	×	1	-		-	10	1	-		4	+	+
	Ч	(x)	= 3	Cı	€3	×	2 C	2 8	-2)		Y	66	nr	No:	20	60	10	E	:0C	>.
	Ч	"(x)	= 9	Ci	e 3	× +	162	6	2×	-	-		-		-	-				+
							14.0								1			-	-	
9 C1 @3x	4 - 4	- GY	= 0 - 3). C1-	63,	× +	20	6	- 2 ×	+	6	Cit	234	+	6	C	26	2×	=(٦.
90. 03	+ 4(2	D-2X	_ <	15	e3	× -	45	2	5-5	× .	=	0			1		-			-


·C) (rado	3		+				145		17(J	A)		7	9	1	i						1		1		
0	γ ³ – ξ	0.0	2	1	~	+	12	.=	= (5		=) (6	0	00	VIC	-	C	CI	tt	NTV.	h	_			
	1. 11 .			1	1	1		- 4					_									11.3	110				
-	(r-3)(1	14:5	2) (r	= :	2)	-	0			_		171	-	-		-	2	2	13		(1	2.))		
	Y=	3	1	(=	2		Y .=	=.2	1.	1	Þ		_				N.	-	7:	-	-	-	7	-			-
		1						`						3	101				17				-				
	EX	1.		T		Vita 1	1						Ň	u	14	•		-	12			-	-	-	-	-	
	7"	+	3	4"	- 4	14	+	1	24		= 9	0				Ĥ,						,		17			
(v)	Sci. 9									_	-	A	- 1			_		-	1	-	-	-	-	-	-	-	
						×					-2	X					2×								12	-	
	YUX) =	= (e-		+	C	2	9		-	+	(3	9			1	_		_			_		
	Α, (×)	= :	3 (16	3×	-	2	Co	E	-2	×	+	2	(,	0	2×		1	10	21)	76	0	m	PI	a	O
	1 1 1	-	-	-	1	1				-				2 1			. 4			31.18	Q	٨	la	E	00	D,	
	4"(4		1.	1	1	-	1 3										- 1	1					-			
	9111	(\times)	=	27	CI	6 ₃	Χ.	- 9	0.0	2	2-	2 X	+	3) C	3	E 3	~				j.		d	-1	1	
ym.	-1341	1_	941	+	12	1 =	-0				-		=,			-					-						\dashv
29616	- 34, 5-5 6-5x	Cz	6-3	×	3	C 3	e	2:X	-	- 2	36	16	X-	-17	2 (26	-54	-	19	C	96	t×	-	12	Ct	e^3	Y
100	10-12	0	C3.	e 2	× -	+	2	9	6	×	1	12	2	€	5		- 1	21	3	-0	2.4		= 0				-
d) 6	rado	4.		1 7	1										-										,		
1)	(r - 5	1,2	(1	+	3)(1	t. (6)	-),			(=	. 0	5	-	C=	-	2	· r	-	-	-		
					1																3				0.		
	Y4 + C	Or ar3	+	181	12	1-	1	3		3U	(C)		18	YOY	+	20	5.0	2	1	25	r.	+	10	-0	=	0	-
	Y4 + 5	3.	+ 4	J. V.	2 -	4	5 1	-1	10	20	5	= 0),	501						1			7.	,		0	
	+++	+	+	-	+	-	3	_		-		-4	-					_									-
	00 li	vea		m	09	ér	ec	(dic	a	00	la	;									-					
	4(4)	J'I			1			1			10 1			-	0	Y.	,								_		
					1		7			1		را	O I			-									-	-	-
(i)	scl. g	SUG	ra	١.	-	-					p			1				1									
	Y(x)	=	d	e	X	1	(1	χ	0	5.X	-1	C	3 (2 3	×	+	Ca	6	1	6 ×			-	,			-
21	1,1(x)	=	50	ie'	5X	+:	5(2 %	9	5 X	+	6	62	× -	- 3 ×	(3	9	3 ×	2	C	5 (4	9	- 1	6×		
	VIII (x)	- 1	25	1000	SX	+ 1	25	(2)	X	57	+	F	5	2	25	Y -	7	0	26	+	30	0	4.6	- (46		SX.
	Y(4)(X)	= (25	Ci	Ez	* +	6	25	(2	X	5×	+	20	0	(2	52	×	+	3	C	3.0	-3	+	12	96	5.0	46


	erc	+	1	310			1	1			-	-		-		-	-	Ty.	76	-	-	1		TY		_				_		
-		1	1	(1	· –	2)(1	(-	+ 1	-	2	i)	(r	+.	1 +	- 0	2 1)	=	0			1	-		-	-			
-	-	-	1	(1	-	2)	1	11	2	LY	+	2	Cr	+	-	+ .	1	2	i	-2	=	-	ii-	412		= (0		-	-	-	
-	-	+	-	(1	- 1	2)	1	1	2	+21	(+	5)	= (b .		5	,							1				10	1	-	
		+	+	- Y	3	+-	*		+ 9	YC		21	2	+4	Υ.	- 10	0.	= () ·			1			14.		1					-
	1		1		_	7	1	-		0	Ξ	0		=)	\in	C.	C	CITI	C	16	271	70	0			7		-	- 12			
(6	200	1	lik	16	a		1	10	M	0	90	00	C		a	10	uc	id	a										-			_
		+	+				1,	4	m-	+	Ч	1-	-1	0,	1 :	= () .		-6				-		Na,		- 1		1			
i)	Sc	101	10	n	(10		- 1	- 1				-														Ľ					
_							I				0		+	1	3	7)			-)		- (155	-	-				
-	- 1	1	=	7		_	-		Y	=	-	1 :	+	21	-		= `	?	9	9	= -	-7	1	0:	=	2		-	-		-	
*	40	χ)		=		(1	E	2	X	+	-	2	×	(C	(05	2)	(-	+	(3	50	50	2)	()		N.	35		-		
*	41	~1	5	=			1	-			173		1-	1	1	1	1	1.13			1	. 1			18		V	11	1			
	7	1	+			1.0	1.	20	3	C	05	2	×	()	2	101	2 x	1	(5	60	2)	()	+	9		(-	20	2	9	N 2	X
	911	X	1		Λ	C	1 1	0	X		0	- >	4	1	FF	10		-			0	~			- X	,						
		1	1	-	7	6	1 (ro	15	7	7	+	0	X	100	12	0	-	3	19.0	1 1	X	-	(02	(-	2 (2	en	2>	¢ -	+
		1	7			1	30	7	X	- X	1	-	rn		X	4	10	0	01	0	23	+ '	46	3	(0)	2	X)		-	C.	-	-
1	7 . 1		-		1 !			: 1					1	1	1		1	1			1		-		- 11			Au		-	-	-
*	41	16	X,) =	=	41	(1	6	7 X	+	6	-×	1	(5	(0)	(2)	4	C	310	0	2×)	- "	16	-4	(-	2	(2	ser	2	× ·	+
	-	-	1			2	0	3	cu	2	X)_	1	e	-×	1	-4	()	CC	5	JX	-	4	(3	161	7	2x	1.				
4	111	11 -		1	_	1				i		100	har a	1	1	1	1	1		1	1	1	1	1		1	1		Y	B		
*	Ψ' - -	1	X	1	_	2	30	1	5			1->	((2	(0)	27	1	C3	ece	15	X)	+	6	^	(-2	2 (25	60	2×	+	2	3
	-	+	+		-	1	10	1	()	+	7	-	1	1	3	16	0.5	X	+	2	3(S	17X)	-2	6	- ^	(-	4(2	Col	2
	-	+	+		-	4	1	5	16	1	0	0	10	4	X	(-	4	200))	1	1	19	13	7.0	11.7	^_	-	+ +	1-	-	-	26

CS Scanned with CamScanner

cambiopo	WOI.	N	CIIII	M	20	41,	1	Ч	11	,	-	1.0			- 1	100	1	00	1 100		1	-
	Ч	m',	+41	-1	OY	=	-												1			
Sere?	×+	GS	36	X-(052	× -	-6	C) (×	sen	DX	4	8	2	5-x	ser	12×	-8	Cz	e-x	(0)
71260	* sen	2×	+	12	C2 6	×	CÓ	52	X	,	C31	×	261	12)	(-	Con	e	×	O.	2 ×	× ()	021
-106	e 2×	-	100	26)-x-	(0)	13	X	-	60	CQ.	e-×	25	A) -	2 X	701	= 0		2 3			1
	24 1	73			1.16	1 8				1					(122	0.	V	1		1	

C)	L: NI	= 3	4:11	y) = (1	e) (n IV	epp	aci	0	Vec	4cm	11	de	1	2)4	0	cic
			-	1		-two	(de)	-n	ne	ces_	96	NVO	90	51			1	
Pro	pledo	q 7:	Vi	+ 1/2	. (E V				14								
0/1		Si	41	142	€	NL		-		11) = 2) =								
f	inor	-	- 14)	42) 42)	= = <	0	+	0	+-	-) 9	u	11+	Y 2	E	2	L	51
Pro	peda	d 2	×	41 €	. 2	L										1 (7	
	l(l(× 0) × 11) × 11)	= X = X	(0)	1)								- 3			1		
		0	= 0	-> se		mple	911	0	4 4	E	N			156			U	
idoe	prac	10.	OI Pro	++	25	-				sole i	m	× 9	6	11 0	<u> </u>	S)i.i	
Keldi	CIG	2.50	v more	JOON	~	5 10	OIDIE		~						la la			
J.	16 90	? Ta	4101.															
	et.	= \sum_{\infty}	UI	= 1	+	t 1	- t ²		t ³		₹1 4!	+.		+				
	sust.	ne:	t	= t	×,	A 70	5016	100	8	cic	Uło	91	e :	i = [2 = [3 :	L -	i		
	e i× =	= \sqrt{2}=0	(ix)		- 11									[4 [5	=	i		
	e ^{ix} =	14	ix +(i	x) ² +	- <u>(i</u>	x) ³	+ (i)	()4	+	(ix) ⁵	+						
4	1:4		1	12	1	X3 -	1 1	1 1							1	1		

