
36 Chapter 2 Probability

CASE STUDY 2.4.1

Several years ago, a television program (inadvertently) spawned a conditional
probability problem that led to more than a few heated discussions, even in the
national media. The show was Let’s Make a Deal, and the question involved
the strategy that contestants should take to maximize their chances of winning
prizes.

On the program, a contestant would be presented with three doors, behind
one of which was the prize. After the contestant had selected a door, the host,
Monty Hall, would open one of the other two doors, showing that the prize
was not there. Then he would give the contestant a choice—either stay with
the door initially selected or switch to the “third” door, which had not been
opened.

For many viewers, common sense seemed to suggest that switching doors
would make no difference. By assumption, the prize had a one-third chance
of being behind each of the doors when the game began. Once a door was
opened, it was argued that each of the remaining doors now had a one-half
probability of hiding the prize, so contestants gained nothing by switching their
bets.

Not so. An application of Definition 2.4.1 shows that it did make a
difference—contestants, in fact, doubled their chances of winning by switching
doors. To see why, consider a specific (but typical) case: The contestant has bet
on Door #2 and Monty Hall has opened Door #3. Given that sequence of events,
we need to calculate and compare the conditional probability of the prize being
behind Door #1 and Door #2, respectively. If the former is larger (and we will
prove that it is), the contestant should switch doors.

Table 2.4.1 shows the sample space associated with the scenario just de-
scribed. If the prize is actually behind Door #1, the host has no choice but to
open Door #3; similarly, if the prize is behind Door #3, the host has no choice
but to open Door #1. In the event that the prize is behind Door #2, though,
the host would (theoretically) open Door #1 half the time and Door #3 half the
time.

Table 2.4.1

(Prize Location, Door Opened) Probability

(1, 3) 1/3

(2, 1) 1/6

(2, 3) 1/6

(3, 1) 1/3

Notice that the four outcomes in S are not equally likely. There is neces-
sarily a one-third probability that the prize is behind each of the three doors.
However, the two choices that the host has when the prize is behind Door #2
necessitate that the two outcomes (2, 1) and (2, 3) share the one-third probabil-
ity that represents the chances of the prize being behind Door #2. Each, then,
has the one-sixth probability listed in Table 2.4.1.
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Let A be the event that the prize is behind Door #2, and let B be the event
that the host opened Door #3. Then

P(A|B) = P(Contestant wins by not switching) = [P(A ∩ B)]/P(B)

= [ 1
6

] /[ 1
3 + 1

6

]
= 1

3

Now, let A∗ be the event that the prize is behind Door #1, and let B (as before)
be the event that the host opens Door #3. In this case,

P(A∗|B) = P(Contestant wins by switching) = [P(A∗ ∩ B)]/P(B)

= [ 1
3

] /[ 1
3 + 1

6

]
= 2

3

Common sense would have led us astray again! If given the choice, contestants
should have always switched doors. Doing so upped their chances of winning
from one-third to two-thirds.

Questions

2.4.1. Suppose that two fair dice are tossed. What is the
probability that the sum equals 10 given that it exceeds 8?

2.4.2. Find P(A ∩ B) if P(A) = 0.2, P(B) = 0.4, and
P(A|B) + P(B|A) = 0.75.

2.4.3. If P(A|B) < P(A), show that P(B|A) < P(B).

2.4.4. Let A and B be two events such that P((A ∪ B)C) =
0.6 and P(A ∩ B) = 0.1. Let E be the event that either A
or B but not both will occur. Find P(E|A ∪ B).

2.4.5. Suppose that in Example 2.4.2 we ignored the ages
of the children and distinguished only three family types:
(boy, boy), (girl, boy), and (girl, girl). Would the condi-
tional probability of both children being boys given that
at least one is a boy be different from the answer found
on pp. 33–34? Explain.

2.4.6. Two events, A and B, are defined on a sample space
S such that P(A|B) = 0.6, P(At least one of the events oc-
curs) = 0.8, and P(Exactly one of the events occurs) = 0.6.
Find P(A) and P(B).

2.4.7. An urn contains one red chip and one white chip.
One chip is drawn at random. If the chip selected is red,
that chip together with two additional red chips are put
back into the urn. If a white chip is drawn, the chip is re-
turned to the urn. Then a second chip is drawn. What is
the probability that both selections are red?

2.4.8. Given that P(A) = a and P(B) = b, show that

P(A|B) ≥ a + b − 1
b

2.4.9. An urn contains one white chip and a second chip
that is equally likely to be white or black. A chip is drawn

at random and returned to the urn. Then a second chip
is drawn. What is the probability that a white appears on
the second draw given that a white appeared on the first
draw? (Hint: Let Wi be the event that a white chip is se-
lected on the ith draw, i = 1, 2. Then P(W2|W1) = P(W1∩W2)

P(W1) .
If both chips in the urn are white, P(W1) = 1; otherwise,
P(W1) = 1

2 .)

2.4.10. Suppose events A and B are such that P(A ∩
B) = 0.1 and P((A ∪ B)C) = 0.3. If P(A) = 0.2, what
does P[(A ∩ B)|(A ∪ B)C] equal? (Hint: Draw the Venn
diagram.)

2.4.11. One hundred voters were asked their opinions of
two candidates, A and B, running for mayor. Their re-
sponses to three questions are summarized below:

Number Saying “Yes”

Do you like A? 65
Do you like B? 55
Do you like both? 25

(a) What is the probability that someone likes neither?
(b) What is the probability that someone likes exactly
one?
(c) What is the probability that someone likes at least
one?
(d) What is the probability that someone likes at most
one?
(e) What is the probability that someone likes exactly one
given that he or she likes at least one?


