Vector Projection - Activities

Objectives: Understand and create the projection vector $\operatorname{proj}_{\mathrm{u}}(\mathrm{v})$ where vector v is projected onto vector \mathbf{u}. Find the distance from a point to a line using $\operatorname{proj}_{\mathrm{u}}$ (v).

Recall, from Trigonometry, for any right triangle

$$
a^{2}+b^{2}=c^{2}, \quad \cos \theta=\frac{b}{c}, \text { so } b=c \cdot \cos \theta
$$

Example:

Method to find the projection vector: $\operatorname{proj}_{\mathrm{u}}(\mathrm{v})$

Given two vectors \mathbf{u} and \mathbf{v}.

u
Using trigonometry

(Length of side)
Recall: $\frac{\mathbf{u}}{\|\mathbf{u}\|}$ is the unit vector in the direction of \mathbf{u}. Note: One unit in the \mathbf{u} direction is $\mathbf{1} \cdot \frac{\mathbf{u}}{\|\mathbf{u}\|}$.

$\frac{\mathrm{u}}{\|\mathrm{u}\|} \quad \underset{\left(\text { Length of } \operatorname{side)} \frac{\mathrm{u}}{\|\mathrm{u}\|}=\left(\frac{\mathrm{u}}{\|\mathrm{u}\|} \cdot \mathrm{v}\right) \frac{\mathrm{u}}{\|\mathrm{u}\|}=\left(\frac{\mathrm{u} \cdot \mathrm{v}}{\mathrm{u} \cdot \mathrm{u}}\right) \mathrm{u}=\operatorname{proj}_{\mathrm{u}}(\mathrm{v})\right.}{ }$
$\underline{\text { Note: }}$: We can use this knowledge to find the distance of a point \mathbf{P} to a line \mathbf{L}
Since $\boldsymbol{p r o j}_{\mathrm{u}}(\mathrm{v})+\mathbf{w}=\mathrm{v} \rightarrow \mathbf{w}=\mathrm{v}-\boldsymbol{p r o j}_{\mathrm{u}}(\mathrm{v}) \quad$ So, $\quad\|\mathbf{w}\|=\left\|\mathrm{v}-\boldsymbol{p r o j}_{\mathrm{u}}(\mathrm{v})\right\|$ which is the distance from point \mathbf{P} to the line \mathbf{L}

Using the above information, solve the following problems:
a. Let $\mathbf{u}=\left[\begin{array}{l}6 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ Show all steps in finding the projection vector $\boldsymbol{p r o j} \boldsymbol{j}_{\mathbf{u}}$ (v)

Draw and label all vectors.
Use the Vector Projection applet to verify your results.

Find the distance between the point \mathbf{P} and line \mathbf{L}
b. Again, let $\mathbf{u}=\left[\begin{array}{l}6 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 2\end{array}\right] \quad$ Show all steps in finding the projection vector $\boldsymbol{p r o j} \boldsymbol{j}_{\mathbf{v}}(\mathbf{u})$ Draw and label all vectors.

Use the Vector Projection applet to verify your results.
Note: To use this applet to do this change $\mathbf{u}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}6 \\ 1\end{array}\right]$

Find the distance between the point \mathbf{P} and line \mathbf{L}

A vector in any plane can be projected onto any other vector in that plane.

Let $\mathbf{u}=\left[\begin{array}{l}6 \\ 1 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 2 \\ 5\end{array}\right]$ Show all steps in finding the projection vector $\boldsymbol{p r o j} \boldsymbol{j}_{\mathbf{u}}$ (v)
Use the Vector Projection applet to verify your results.

Find the distance between the point \mathbf{P} and line \mathbf{L}

