(Dans la suite on suppose le plan complexe est rapporté à un repère orthonormé (O; u; v)).

- **1.** Résoudre, dans l'ensemble des complexes, les équations suivantes :
 - 1) (1+i)z+5-i=0
 - $2) iz + 2\overline{z} = 1 i$

Module d'un nombre complexe

2. A- Calculer le module de chacun des nombres complexes suivants :

1)
$$z = \frac{(1+3i)^2}{2-i}$$
 2) $z = (1+3i)^2 \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^5$

- 3) $a = \frac{z+i}{\overline{z}-i}$ (où z est un nombre complexe)
- *B-1)* z est nombre complexe tel que |z|=2, calculer le module de $z'=z-\frac{1}{\overline{z}}$.
 - 2) z est un nombre complexe tel que $|z| = \sqrt{2}$, calculer $|\overline{z} + i\overline{z}|$.
- C- Résoudre, dans l'ensemble des complexes, l'équation suivante : $z + |z^2| = 3 + i$
- **3.** z et z' étant deux nombres complexes tels que |z| = |z'| = 1.

Montrer que
$$\frac{z+z'}{1+zz'}$$
 est réel. $(zz' \neq -1)$

Image et affixe - Ensemble de points

- **4.** 1) On donne les points A, B, C et D d'affixes respectives 1 + i, 2 + 3i, 4 + 4i et 3 + 2i. Placer les points A, B, C et D et montrer que ABCD est un losange.
 - 2) Déterminer l'ensemble des points M d'affixe z tel que |iz-5|=4.
 - 3) On donne les deux points A et B d'affixes respectives 1 et 2i. On désigne par (C) le cercle de centre O et de rayon 1 et par (C') le cercle de centre A et de rayon $\sqrt{5}$.

A tout point M d'affixe $z \neq 2i$ on associe le point M' d'affixe $z' = \frac{z+1}{z-2i}$.

- a-1) Calculer z' pour z = 1 + i.
 - 2) Pour quelle valeur de z a-t-on z' = i?
- b- On pose z = x + iy et z' = x' + iy'. (x, y et x', y' sont des réels). Calculer x' et y' en fonction de x et y.
- c- Déterminer l'ensemble des points M dans chacun des cas suivants:
 - 1) z' est réel
 - 2) z' est imaginaire pur.
 - 3) M' appartient au cercle de centre O et de rayon 1.
- *d-1*) *Montrer que* (z'-1)(z-2i) = 1 + 2i.
 - 2) En déduire l'ensemble des points M lorsque le point M' décrit le cercle (C').

Forme trigonométrique

5. A - Mettre sous forme trigonométrique chacun des nombres complexes suivants :

1)
$$z = \frac{1 - i\sqrt{3}}{\sqrt{3} + i}$$
 2) $z = \left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)^9$ 3) $z = -2\left(\cos\frac{\pi}{7} - i\sin\frac{\pi}{7}\right)$

B – Soit z un nombre complexe tel que $arg(z) = \frac{\pi}{6} (2\pi)$, calculer:

1)
$$arg\left(\frac{i}{(\overline{z})^2}\right)$$
 2) $arg\left(\frac{-z^3}{(i.\overline{z})^2}\right)$

Forme exponentielle

6. Mettre sous forme trigonométrique et algébrique chacun des nombres complexes suivants :

1)
$$z = \overline{\left(2e^{i\frac{7\pi}{6}}\right)}$$
 2) $z = \left(-\sqrt{2}e^{-i\frac{\pi}{4}}\right)\left(\sqrt{3}-i\right)$ 3) $z = \frac{1+i\sqrt{3}}{e^{3i\frac{\pi}{4}}}$

7. A - En utilisant la notation exponentielle d'un complexe, mettre sous forme trigonométrique chacun des nombres complexes suivants :

1)
$$z = \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^9$$
 2) $z = \frac{(1+i)^{10}}{(\sqrt{3}-i)^5}$

B- On donne $z = -\sqrt{3} + e^{i\frac{\pi}{6}}$, écrire z sous forme exponentielle.

8. z étant un complexe, soit $z' = \frac{1+z}{1-z}$. $(z \neq 1 \text{ et } z \neq -1)$

- 1) Calculer z' pour $z = e^{i\frac{\pi}{3}}$
- 2) Montrer si |z| = 1, alors z' est imaginaire pur.
- **9.** Soit le complexe $z = \frac{1+i\sqrt{3}}{1-i}$.
 - 1) Ecrire z sous forme algébrique.
 - 2) Ecrire z sous forme trigonométrique.
 - 3) En déduire les valeurs exactes de $\cos \frac{7\pi}{12}$, $\sin \frac{7\pi}{12}$, $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.
- **10.** On donne les points A et B tels que : $z_A = 1$ et $z_B = \frac{3}{2} + i\frac{\sqrt{3}}{2}$.

Soit (C) le cercle de centre A et de rayon 1.

- 1) a-Ecrire $z_B z_A$ sous forme exponentielle.
 - b- Déterminer une mesure de l'angle ($\overset{
 ightarrow}{u}$; $\overset{
 ightarrow}{AB}$).
 - c-Montrer que le point B appartient au cercle (C).
- 2) A tout point M d'affixe z, non nul, on associe le point M' d'affixe z' tel que $z' = \frac{\overline{z} + 2}{\overline{z}}$.
 - *a- Démontrer que* \overline{z} (z'-1)= 2.
 - b- En déduire que, lorsque M' décrit le cercle (C), M décrit un cercle (T) à déterminer.

11. On désigne par A, B et C les points d'affixes respectives $z_A = 2-3i$, $z_B = i$ et $z_C = 6-i$.

1) Calculer $\frac{z_B - z_A}{z_C - z_A}$.

En déduire la nature du triangle ABC.

- 2) A tout point M d'affixe z distincte de i, on associe le point M' d'affixe z' telle que : $z' = \frac{i(z-2+3i)}{z-i}$. Si z = 1-i, déterminer la forme exponentielle de z'.
- 3) a) Si z' = 2i, trouver la forme algébrique de z (on note E le point d'affixe z obtenue). b) Vérifier que E est un point de la droite (AB).
- 4) Démontrer que si le point M varie sur la médiatrice du segment [AB] alors le point M' varie sur un cercle de centre O dont on précisera le rayon.
- **12.** Les affirmations suivantes sont vraies. Justifier.
- 1) On considère trois points A, B et C distincts d'affixes respectives a, b et c tels que $\frac{c-a}{b-a} = 2i$.

 A appartient au cercle de diamètre [BC].
- 2) Si $\frac{\pi}{2}$ est un argument de z, alors |i+z|=1+|z|.
- 3) Si $z = 3\sqrt{3} + 3i$ alors z^3 est imaginaire pur.
- 4) Si $z = e^{i\theta}$, alors $z^2 + \frac{1}{z^2}$ est réel.
- $5) \left| i\overline{Z} + 1 \right| = \left| Z + i \right| .$

13. on considère les points A et B d'affixes respectives $a = -4\sqrt{3} - 4i$ et $b = -4\sqrt{3} + 4i$.

- 1) Déterminer la nature du triangle OAB.
- 2) Soit C le point d'affixe $c = \sqrt{3} + i$ et D le point tel que : OC = OD et $(\overrightarrow{OC}, \overrightarrow{OD}) = \frac{\pi}{3}$ (2π) . Déterminer l'affixe de D.
- 3) Soit G le point d'affixe $g = -4\sqrt{3} + 6i$. a- Montrer que OBGD est un parallélogramme. b- Vérifier que : $\frac{c-g}{a-g} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$.
 - c-Déduire une mesure, en radians, de l'angle $(\overrightarrow{GA}, \overrightarrow{GC})$ et la valeur du rapport $\frac{GC}{GA}$. d-Quelle est la nature du triangle AGC?