Angle Proofs Reference | Properties of Equality | | Properties of Congruence | |--|--|---| | Addition Property Subtraction Property Multiplication Property Division Property Distributive Property | Substitution Property
Reflexive Property
Symmetric Property
Transitive Property | Reflexive Property
Symmetric Property
Transitive Property | | Definitions | | | |---------------------------------------|---|--| | Definition of
Congruence | $m\angle A = m\angle B \leftrightarrow \angle A \cong \angle B$ | | | Definition of
Angle Bisector | An angle bisector divides an angle into two equal parts. | | | Definition of Complementary Angles | Complementary ↔ Sum is 90°. | | | Definition of
Supplementary Angles | Supplementary ↔ Sum is 180°. | | | Definition of
Perpendicular | Perpendicular lines form right angles. | | | Definition of
a Right Angle | A right angle = 90°. | | | Postulates | | | |-----------------------------|-----|-----------------------| | Angle Addition
Postulate | B C | m∠ABD + m∠DBC = m∠ABC | | <u>Jheorems</u> | | | |-------------------------------------|---|--| | Vertical Angles
Theorem | If two angles are vertical, then they are congruent. | | | Complement
Theorem | If two angles form a right angle,
then they are complementary.
Right Angle → Complementary | | | Supplement
Theorem | If two angles form a linear pair,
then they are supplementary.
Linear pair → Supplementary | | | Congruent
Complements
Theorem | If $\angle A$ is complementary to $\angle B$ and $\angle C$ is complementary to $\angle B$, then $\angle A \cong \angle C$ | | | Congruent
Supplements
Theorem | If $\angle A$ is supplementary to $\angle B$ and $\angle C$ is supplementary to $\angle B$, then $\angle A \cong \angle C$ | | ## Segments Proofs Reference ## Properties of Equality Addition Property Subtraction Property Multiplication Property Division Property Distributive Property Substitution Property Reflexive Property Symmetric Property Transitive Property The properties above may only be used with EQUAL signs. The following properties of congruence can be applied to statements with congruence symbols: | Properties of Congruence | | |--------------------------------------|---| | Reflexive Property
of Congruence | For any segment AB, $\overrightarrow{AB} \cong \overrightarrow{AB}$. | | Symmetric Property
of Congruence | IF AB \$ CD , then CD \$ AB . | | Transitive Property
of Congruence | IF AB 学 CD and CD 学 EF Then AB 学 EF | | Definitions | | | |-----------------------------|--|--| | Definition of
Congruence | Segments are congruence if and only if they have the same measure: If $\overrightarrow{AB} \cong \overrightarrow{CD}$, then $\overrightarrow{AB} \cong \overrightarrow{CD}$. If $\overrightarrow{AB} = \overrightarrow{CD}$, then $\overrightarrow{AB} \cong \overrightarrow{CD}$. | | | Definition of
Midpoint | The midpoint of a segment divides the segment into 2 equal (congruent) parts. If M is the midpoint of AB, then AM = MB | | | Postulates | | |-------------------------------|---| | Segment Addition
Postulate | If A, B, and C are collinear points and B is between A and C: $ \frac{B}{A} = \frac{B}{C} $ then: $\frac{AB+BC}{AC} = \frac{AC}{C}$ |