S11.1 Sequences
Test average $\approx 50 \%$
Tests will be returned tomorrow by your TA

Defin: A sequence is an infmite list of numbers.

$$
\left\{a_{1}, a_{2}, a_{3}, \ldots .\right\}=\left\{a_{n}\right\}=\left\{a_{n}\right\}_{n=1}^{\infty}
$$

Some sequares are given by formulas:

$$
\begin{aligned}
& \text { Ex: } a_{n}=\frac{1}{2^{n}} \text { ie. }\left\{\frac{1}{2^{n}}\right\}_{n=1}^{\infty} \\
& \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \cdots\right\} \\
& \text { Ex: } a_{n}=\sqrt{2} \quad\{\sqrt{2}\}_{n=1}^{\infty}
\end{aligned}
$$

$$
\{\sqrt{2}, \sqrt{2}, \sqrt{2}, \ldots n\}
$$

Ex: Recursive Formula

$$
\begin{aligned}
& a_{1}=1 \quad a_{2}=1 \quad a_{n+1}=a_{n}+a_{n-1} \\
& \{1,1,2,3,5,8,13, \ldots\}
\end{aligned}
$$

Fibonacci
Sequence
Getting formula for a sequence from the first few terms
Ex: $\left\{\frac{3}{5}, \frac{4}{25}, \frac{5}{125}, \frac{6}{625}, \cdots\right\}$

$$
\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}
$$

numerator is $n+2$ for $n \geqslant 1$ denominator is 5^{n}

$$
a_{n}=\frac{n+2}{5^{n}}
$$

Ex: $\left\{\frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \ldots\right\}$
denom: $n+1$
numerator: $(-1)^{n+1} \quad a_{n}=\frac{(-1)^{n+1}}{n+1}$

$$
\left\{\frac{(-1)^{n+1}}{n+1}\right\}_{n=1}^{\infty} \text { or }\left\{\frac{(-1)^{n}}{n}\right\}_{n=2}^{\infty}
$$

Convergence of Sequences
Similar to functions, we ask:

$$
\lim _{n \rightarrow \infty} a_{n}=? \quad\{ \}
$$

for some sequence $\left\{a_{n}\right\}$
Def'n: A sequence $\left\{a_{n}\right\}$ converges to L if we can wake a_{n} arbitrarily close to L by waking n large enough.

	$\ldots \cdot \cdots \cdot \cdots$	
	\cdots	

If $\left\{a_{n}\right\}$ converges to L we write $\lim _{n \rightarrow \infty} a_{n}=L$, or $a_{n} \rightarrow L$ as $n \rightarrow \infty$. If no such L exists, we say $\left\{a_{n}\right\}$ diverges.
Ex: $\lim _{n \rightarrow \infty} \frac{1}{n}=0$

Ex: $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$ is divergent

Ex: $\lim _{n \rightarrow \infty} n$ diverges
Theorem: If $\lim _{x \rightarrow \infty} f(x)=L$ for some function $f^{x \rightarrow \infty}$ and $a_{n}=f(n)$ for all $n \geqslant 1$, then $\lim _{n \rightarrow \infty} a_{n}=L$.

$$
\begin{aligned}
& \text { Ex: } \lim _{n \rightarrow \infty} \frac{1}{n}=? \quad \begin{array}{l}
\text { Notice: } f(x)=\frac{1}{x} \\
\text { has value } \frac{1}{n}=a_{n} \\
\text { when evaluated } \\
\text { at } n \text {. We know } \\
\lim _{x \rightarrow \infty} \frac{1}{x}=0
\end{array}
\end{aligned}
$$

Ex: $\left\{\frac{\sin (n)}{n}\right\}_{n=1}^{\infty}$ Consider $f(x)=\frac{\sin (x)}{x}$
"Sandwich Theorem"

$$
-1 \leq \sin (x) \leq 1
$$

so

0
Theorem $\Rightarrow \lim _{n \rightarrow \infty} \frac{\sin (n)}{n}=0$
Limit Laws: If $\left\{a_{n}\right\}$ ad $\left\{b_{n}\right\}$ are sequences with $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$ then:
(i) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=L \pm M$
(ii) $\lim _{n \rightarrow \infty} c \cdot a_{n}=c \lim _{n \rightarrow \infty} a_{n}=c L$
(iii) $\lim _{n \rightarrow \infty} a_{n} \cdot b_{n}=L \cdot M$
(iv) If $M \neq 0$ then

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{L}{M}
$$

Power haw: If $a_{n}>0$ for all n and $p>0$ thew

$$
\lim _{n \rightarrow \infty}\left(a_{n}\right)^{p}=L^{p}
$$

Squeeze If $a_{n} \leq b_{n} \leq C_{n}$ for all
Theorem n and $\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} C_{n}$ then $\lim _{n \rightarrow \infty} b_{n}=L$.
Absolute
$\left.\begin{array}{c}\text { (value } \\ \text { Theremin }\end{array}\right)$ If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} \lim _{n}=0$.
Ex: $\lim _{n \rightarrow \infty} \frac{1}{n^{3}}=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{3}=\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{3^{3}}=0^{3}=0$

Ex: $\lim _{n \rightarrow \infty}\left(\frac{(-1)^{n}}{n^{3}}\right)$
Notice: $\left|\frac{(-1)^{n}}{n^{3}}\right|=\frac{1}{n^{3}}$ and $\lim _{n \rightarrow \infty} \frac{1}{n^{3}}=0$
So $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n^{3}}=O$ ($\left.\begin{array}{r}n y \text { Abs. Val. } \\ \text { Theorewir }\end{array}\right)$
??

$$
\lim _{n \rightarrow \infty}\left(\frac{(-1)^{n}}{n^{3}}\right)^{?} \stackrel{=}{=} \lim _{n \rightarrow \infty}\left((-1)^{n}\right) \cdot \lim _{n \rightarrow \infty}\left(\frac{1}{n^{3}}\right)
$$

divalent so we cart use Limit law (iii)

Ex: Consider $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty}\left(\frac{n}{n} \cdot \frac{1}{1+\frac{1}{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{1}{n}}\right)=\frac{\lim _{n \rightarrow \infty} 1}{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)} \tag{iv}\\
& =\frac{1}{\lim _{n \rightarrow \infty}(1)+\lim _{n \rightarrow \infty} \frac{1}{n}}
\end{align*}
$$

$$
=\frac{1}{1+0}=1 .
$$

Thu: If $\lim _{n \rightarrow \infty} a_{n}=L$ and a function $n \rightarrow \infty=f(x)$ is cont. at L then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Ex: $a_{n}=\sin \left(\frac{\pi}{n}\right)$
Notice $\lim _{n \rightarrow \infty} \frac{\pi}{n}=\pi \lim _{n \rightarrow \infty} \frac{1}{n}$

$$
\begin{equation*}
=0 \tag{ii}
\end{equation*}
$$

So $\lim _{n \rightarrow \infty} \sin \left(\frac{\pi}{n}\right)=\sin \left(\lim _{n \rightarrow \infty} \frac{\pi}{n}\right)=\sin (0)$
Recall: If $f(x)=b^{x}$ for $b \geqslant 0$ then

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} b^{x}=\left\{\begin{array}{cc}
\text { diverges } & b>1 \\
1 & b=1 \\
0 & 0 \leq b<1
\end{array}\right. \\
\Rightarrow & \lim _{n \rightarrow \infty} b^{n}=0 \text { if } 0 \leq b<1
\end{aligned}
$$

But whet about $b<0$?
Use the abs. vel. thin.: if $-1<b \leq 0$ then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|b^{n}\right| & =\lim _{n \rightarrow \infty}|b|^{n}=0 \\
& \Rightarrow \lim _{n \rightarrow \infty} b^{n}=0 \text { when }-1<b \leq 0
\end{aligned}
$$

Monotonic Sequences
Defn: A sequence $\left\{a_{n}\right\}$ is
(i) increasing if $a_{n}<a_{n+1}$
for all $n \geq 1$
(ii) decreasing if $a_{n}>a_{n+1}$ for all $u \geqslant 1$.

If $\left\{a_{n}\right\}$ either is decreasing as increasing, it is
Defn:A sequence $\left\{a_{n}\right\}$ is called bounded if there are M, M^{\prime} sit.

$$
M^{2} \leq a_{n} \leq M \text { for all } x \geqslant 1 \text {. }
$$

Thu: A monotonic sequence which is bounded is convergent.

